Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Org Chem ; 66(20): 6513-22, 2001 Oct 05.
Article in English | MEDLINE | ID: mdl-11578199

ABSTRACT

Two aldehydes, 2,6-diacetamido-4-formylpyridine (7) and 1-butyl-6-formyluracil (11), are used to synthesize five pyridyl and four uracyl meso-subsituted porphyrins. With these complementary porphyrin building blocks, it is possible to build various types of multi-porphyrin supramolecules with different spatial relationships in predefined geometries. The formation and properties of self-complementary dimers and a closed tetrameric square are presented as a basis of comparison to the latter system in the solid state. An X-ray structure of 5,10-bis(4-tert-butylphenyl)-15,20-bis(3,5-diacetamido-4-pyridyl)porphyrin confirms its molecular structure and reveals a hydrogen-bonded supramolecular organization mediated by water molecules.


Subject(s)
Mesoporphyrins/chemical synthesis , Aldehydes/chemistry , Drug Design , Hydrogen Bonding , Mesoporphyrins/chemistry , Molecular Conformation , Molecular Structure , Polymers/chemical synthesis , Polymers/chemistry
2.
J Am Chem Soc ; 123(27): 6564-78, 2001 Jul 11.
Article in English | MEDLINE | ID: mdl-11439043

ABSTRACT

Three bis-axially ligated complexes of iron(III) octaethyltetraphenylporphyrin, (OETPP)Fe(III), have been prepared, which are low-spin complexes, each with two axial nitrogen-donor ligands (N-methylimidazole (N-MeIm), 4-(dimethylamino)pyridine (4-NMe(2)Py), and 2-methylimidazole (2-MeImH)). The crystal and molecular structure of the bis-(2-MeImH) complex shows the macrocycle to be in a saddled conformation, with the ligands in perpendicular planes aligned at 14 degrees to the porphyrin nitrogens so as to relieve the steric interaction between the 2-methyl groups and the porphyrin. The Fe-N(por) bond lengths are typical of nonplanar six-coordinate low-spin Fe(III) complexes, while the axial Fe-N(ax) bond lengths are substantially longer than those of [(TPP)Fe(2-MeImH)(2)](+) (2.09(2) A as compared to 2.015(4) and 2.010(4) A). The crystal and molecular structure of the bis-(4-NMe(2)Py) complex also shows the macrocycle to be in a mainly saddled conformation, but with a significant ruffled component. As a result, the average Fe-N(por) bonds are significantly shorter (1.951 A as compared to 1.974 A) than those of the bis-(2-MeImH) complex. One ligand is aligned at 9 degrees to two trans porphyrin nitrogens, while the other is at 79 degrees to the same porphyrin nitrogens, producing a dihedral angle of 70 degrees between the ligand planes. The EPR spectrum of this complex, like that of the bis-(2-MeImH) complex, is of the "large g(max)" type, with g(max) = 3.29 and 3.26, respectively. However, in frozen CD(2)Cl(2), [(OETPP)Fe(N-MeIm)(2)](+) exhibits both "large g(max)" and normal rhombic signals, suggesting the presence of both "perpendicular" and "parallel" ligand orientations. The 1- and 2D (1)H NMR spectra of each of these complexes, as well as the chloroiron(III) starting material, were investigated as a function of temperature. The COSY and NOESY/EXSY spectra of the chloride complex are consistent with the expected J-coupling and saddle inversion dynamics, respectively. Complete spectral assignments for the bis-(N-MeIm) and -(4-NMe(2)Py) complexes have been made using 2D (1)H NMR techniques. In each case, the number of resonances due to methylene (two) and phenyl protons (one each) is consistent with D(2)(d)() symmetry, and therefore an effective perpendicular orientation of the axial ligands on the time scale of the NMR experiments. The temperature dependences of the (1)H resonances of these complexes show significant deviations from Curie behavior, and also evidence of extensive ligand exchange and rotation. Spectral assignment of the eight methylene resonances of the bis-(2-MeImH) complex to the four ethyl groups was possible through the use of 2D (1)H NMR techniques. The complex is fluxional, even at -90 degrees C, and ROESY data suggest that the predominant process is saddle inversion accompanied by simultaneous rotation of the axial ligands. Saddle inversion becomes slow on the 2D NMR time scale as the temperature is lowered in the ligand order of N-MeIm > 4-NMe(2)Py > 2-MeImH, probably due mainly to progressive destabilization of the ground state rather than progressive stabilization of the transition state of the increasingly "hindered" bis-ligand complexes.


Subject(s)
Iron/chemistry , Metalloporphyrins/chemistry , Electron Spin Resonance Spectroscopy/methods , Indicators and Reagents , Molecular Structure , Nuclear Magnetic Resonance, Biomolecular
SELECTION OF CITATIONS
SEARCH DETAIL