Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(31): e2402120121, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39042680

ABSTRACT

Disentangling inputs of aeolian dust, ice-rafted debris (IRD), and eroded continental detritus delivered by ocean currents to marine sediments provide important insights into Earth System processes and climate. This study uses Sr-Nd-Pb isotope ratios of the continent-derived (lithogenic) fraction in deep-sea core TN057-6 from the subantarctic Southern Ocean southwest of Africa over the past 150,000 y to identify source regions and quantify their relative contributions and fluxes utilizing a mixing model set in a Bayesian framework. The data are compared with proxies from parallel core Ocean Drilling Program Site 1090 and newly presented data from potential South America aeolian dust source areas (PSAs), allowing for an integrated investigation into atmospheric, oceanic, and cryospheric dynamics. PSA inputs varied on glacial/interglacial timescales, with southern South American sources dominating up to 88% of the lithogenic fraction (mainly Patagonia, which provided up to 68%) during cold periods, while southern African sources were more important during interglacials. During the warmer Marine Isotope Stage (MIS) 3 of the last glacial period, lithogenic fluxes were twice that of colder MIS2 and MIS4 at times, and showed unique isotope ratios best explained by Antarctic-derived IRD, likely from the Weddell Sea. The IRD intrusions contributed up to 41% at times and followed Antarctic millennial warming events that raised temperatures, causing instability of icesheet margins. High IRD was synchronous with increased bioavailable iron, nutrient utilization, high biological productivity, and decreased atmospheric CO2. Overall, TN057-6 sediments record systematic Southern Hemisphere climate shifts and cryospheric changes that impacted biogeochemical cycling on both glacial/interglacial and subglacial timescales.

2.
Atmos Environ (1994) ; 2542021 Jun 01.
Article in English | MEDLINE | ID: mdl-34211332

ABSTRACT

Coastal southeast Florida experiences a wide range of aerosol conditions, including African dust, biomass burning (BB) aerosols, as well as sea salt and other locally-emitted aerosols. These aerosols are important sources of cloud condensation nuclei (CCN), which play an essential role in governing cloud radiative properties. As marine environments dominate the surface of Earth, CCN characteristics in coastal southeast Florida have broad implications for other regions with the added feature that this site is perturbed by both natural and anthropogenic emissions. This study investigates the influence of different air mass types on CCN concentrations at 0.2% (CCN0.2%) and 1.0% (CCN1.0%) supersaturation (SS) based on ground site measurements during selected months in 2013, 2017, and 2018. Average CCN0.2% and CCN1.0% concentrations were 373 ± 200 cm-3 and 584 ± 323 cm-3, respectively, for four selected days with minimal presence of African dust and BB (i.e., background days). CCN concentrations were not elevated on the four days with highest influence of African dust (289 ± 104 cm-3 [0.2% SS] and 591 ± 302 cm-3 [1.0% SS]), consistent with high dust mass concentrations comprised of coarse particles that are few in number. In contrast, CCN concentrations were substantially enhanced on the five days with the greatest impact from BB (1408 ± 976 cm-3 [0.2% SS] and 3337 ± 1252 cm-3 [1.0% SS]). Ratios of CCN0.2%:CCN1.0% were used to compare the hygroscopicity of the aerosols associated with African dust, BB, and background days. Average ratios were similar for days impacted by African dust and BB (0.54 ± 0.17 and 0.55 ± 0.17, respectively). A 29% higher average ratio was observed on background days (0.71 ± 0.14), owing in part to a strong presence of sea salt and reduced presence of more hydrophobic species such as those of a carbonaceous or mineral-dust nature. Finally, periods of heavy rainfall were shown to effectively decrease both CCN0.2% and CCN1.0% concentrations. However, the rate varied at which such concentrations increased after the rain. This work contributes knowledge on the nucleating ability of African dust and BB in a marine environment after varying periods of atmospheric transport (days to weeks). The results can be used to understand the hygroscopicity of these air mass types, predict how they may influence cloud properties, and provide a valuable model constraint when predicting CCN concentrations in comparable situations.

3.
Proc Natl Acad Sci U S A ; 116(33): 16216-16221, 2019 08 13.
Article in English | MEDLINE | ID: mdl-31358622

ABSTRACT

The deposition of phosphorus (P) from African dust is believed to play an important role in bolstering primary productivity in the Amazon Basin and Tropical Atlantic Ocean (TAO), leading to sequestration of carbon dioxide. However, there are few measurements of African dust in South America that can robustly test this hypothesis and even fewer measurements of soluble P, which is readily available for stimulating primary production in the ocean. To test this hypothesis, we measured total and soluble P in long-range transported aerosols collected in Cayenne, French Guiana, a TAO coastal site located at the northeastern edge of the Amazon. Our measurements confirm that in boreal spring when African dust transport is greatest, dust supplies the majority of P, of which 5% is soluble. In boreal fall, when dust transport is at an annual minimum, we measured unexpectedly high concentrations of soluble P, which we show is associated with the transport of biomass burning (BB) from southern Africa. Integrating our results into a chemical transport model, we show that African BB supplies up to half of the P deposited annually to the Amazon from transported African aerosol. This observational study links P-rich BB aerosols from Africa to enhanced P deposition in the Amazon. Contrary to current thought, we also show that African BB is a more important source of soluble P than dust to the TAO and oceans in the Southern Hemisphere and may be more important for marine productivity, particularly in boreal summer and fall.


Subject(s)
Air Pollutants/analysis , Dust/analysis , Environmental Monitoring , Phosphorus/metabolism , Aerosols/chemistry , Africa, Southern , Atlantic Ocean , Atmosphere , Biomass , Carbon Dioxide/adverse effects , Carbon Dioxide/metabolism , French Guiana , Oceans and Seas , Seasons , South America
4.
Plant Cell Environ ; 39(1): 222-30, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26177782

ABSTRACT

The accumulation of ultraviolet (UV)-absorbing compounds (flavonoids and related phenylpropanoids) and the resultant decrease in epidermal UV transmittance (TUV ) are primary protective mechanisms employed by plants against potentially damaging solar UV radiation and are critical components of the overall acclimation response of plants to changing solar UV environments. Whether plants can adjust this UV sunscreen protection in response to rapid changes in UV, as occurs on a diurnal basis, is largely unexplored. Here, we use a combination of approaches to demonstrate that plants can modulate their UV-screening properties within minutes to hours, and these changes are driven, in part, by UV radiation. For the cultivated species Abelmoschus esculentus, large (30-50%) and reversible changes in TUV occurred on a diurnal basis, and these adjustments were associated with changes in the concentrations of whole-leaf UV-absorbing compounds and several quercetin glycosides. Similar results were found for two other species (Vicia faba and Solanum lycopersicum), but no such changes were detected in Zea mays. These findings reveal a much more dynamic UV-protection mechanism than previously recognized, raise important questions concerning the costs and benefits of UV-protection strategies in plants and have practical implications for employing UV to enhance crop vigor and quality in controlled environments.


Subject(s)
Abelmoschus/radiation effects , Flavonoids/radiation effects , Hibiscus/radiation effects , Solanum lycopersicum/radiation effects , Vicia faba/radiation effects , Zea mays/radiation effects , Abelmoschus/physiology , Acclimatization , Circadian Rhythm , Flavonoids/physiology , Hibiscus/physiology , Solanum lycopersicum/physiology , Plant Epidermis/physiology , Plant Epidermis/radiation effects , Plant Leaves/physiology , Plant Leaves/radiation effects , Sunlight , Ultraviolet Rays , Vicia faba/physiology , Zea mays/physiology
5.
Plant Physiol Biochem ; 93: 94-100, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25465528

ABSTRACT

The accumulation of UV-absorbing compounds (flavonoids and other phenylpropanoid derivatives) and resultant decrease in the UV transmittance of the epidermis in leaves (TUV), is a primary protective mechanism against the potentially deleterious effects of UV radiation and is a critical component of the overall acclimation response of plants to changing UV environments. Traditional measurements of TUV were laborious, time-consuming and destructive or invasive, thus limiting their ability to efficiently make multiple measurements of the optical properties of plants in the field. The development of rapid, nondestructive optical methods of determining TUV has permitted the examination of UV optical properties of leaves with increased replication, on a finer time scale, and enabled repeated sampling of the same leaf over time. This technology has therefore allowed for studies examining acclimation responses to UV in plants in ways not previously possible. Here we provide a brief review of these earlier studies examining leaf UV optical properties and some of their important contributions, describe the principles by which the newer non-invasive measurements of epidermal UV transmittance are made, and highlight several case studies that reveal how this technique is providing new insights into this UV acclimation response in plants, which is far more plastic and dynamic than previously thought.


Subject(s)
Acclimatization/radiation effects , Plant Epidermis/metabolism , Plant Leaves/metabolism , Plant Physiological Phenomena/radiation effects , Ultraviolet Rays , Acclimatization/genetics , Plant Epidermis/genetics , Plant Leaves/genetics , Plant Physiological Phenomena/genetics
SELECTION OF CITATIONS
SEARCH DETAIL