Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
R Soc Open Sci ; 11(2): 231036, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38420627

ABSTRACT

The inverse kinematics (IK) problem addresses how both humans and robotic systems coordinate movement to resolve redundancy, as in the case of arm reaching where more degrees of freedom are available at the joint versus hand level. This work focuses on which coordinate frames best represent human movements, enabling the motor system to solve the IK problem in the presence of kinematic redundancies. We used a multi-dimensional sparse source separation method to derive sets of basis (or source) functions for both the task and joint spaces, with joint space represented by either absolute or anatomical joint angles. We assessed the similarities between joint and task sources in each of these joint representations, finding that the time-dependent profiles of the absolute reference frame's sources show greater similarity to corresponding sources in the task space. This result was found to be statistically significant. Our analysis suggests that the nervous system represents multi-joint arm movements using a limited number of basis functions, allowing for simple transformations between task and joint spaces. Additionally, joint space seems to be represented in an absolute reference frame to simplify the IK transformations, given redundancies. Further studies will assess this finding's generalizability and implications for neural control of movement.

2.
J Neurophysiol ; 121(2): 672-689, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30461364

ABSTRACT

The law of intersegmental coordination (Borghese et al. 1996) may be altered in pathological conditions. Here we investigated the contribution of the basal ganglia (BG) and the cerebellum to lower limb intersegmental coordination by inspecting the plane's orientation and other parameters pertinent to this law in patients with idiopathic Parkinson's disease (PD) or cerebellar ataxia (CA). We also applied a mathematical model that successfully accounts for the intersegmental law of coordination observed in control subjects (Barliya et al. 2009). In the present study, we compared the planarity index (PI), covariation plane (CVP) orientation, and CVP orientation predicted by the model in 11 PD patients, 8 CA patients, and two groups of healthy subjects matched for age, height, weight, and gender to each patient group (Ctrl_PD and Ctrl_CA). Controls were instructed to alter their gait speed to match those of their respective patient group. PD patients were examined after overnight withdrawal of anti-parkinsonian medications (PD-off-med) and then on medication (PD-on-med). PI was above 96% in all gait conditions in all groups suggesting that the law of intersegmental coordination is preserved in both BG and cerebellar pathology. However, the measured and predicted CVP orientations rotated in PD-on-med and PD-off-med compared with Ctrl_PD and in CA vs. Ctrl_CA. These rotations caused by PD and CA were in opposite directions suggesting differences in the roles of the BG and cerebellum in intersegmental coordination during human locomotion. NEW & NOTEWORTHY Kinematic and muscular synergies may have a role in overcoming motor redundancies, which may be reflected in intersegmental covariation. Basal ganglia and cerebellar networks were suggested to be involved in crafting and modulating synergies. We thus compared intersegmental coordination in Parkinson's disease and cerebellar disease patients and found opposite effects in some aspects. Further research integrating muscle activities as well as biomechanical and neural control modeling are needed to account for these findings.


Subject(s)
Cerebellar Ataxia/physiopathology , Models, Neurological , Parkinson Disease/physiopathology , Adult , Aged , Aged, 80 and over , Antiparkinson Agents/therapeutic use , Basal Ganglia/physiopathology , Biomechanical Phenomena , Cerebellum/physiopathology , Female , Gait , Humans , Levodopa/therapeutic use , Lower Extremity/physiopathology , Male , Middle Aged , Muscle, Skeletal/physiopathology , Parkinson Disease/drug therapy
3.
Sci Rep ; 8(1): 10881, 2018 Jul 18.
Article in English | MEDLINE | ID: mdl-30022121

ABSTRACT

Film theorists and practitioners suggest that motion can be manipulated in movie scenes to elicit emotional responses in viewers. However, our understanding of the role of motion in emotion perception remains limited. On the one hand, movies continuously depict local motion- movements of objects and humans, which are crucial for generating emotional responses. Movie scenes also frequently portray global motion, mainly induced by large camera movements, global motion being yet another source of information used by the brain during natural vision. Here we used functional MRI to elucidate the contributions of local and global motion to emotion perception during movie viewing. Subjects observed long (1 min) movie segments depicting emotional or neutral content. Brain activity in areas that showed preferential responses to emotional content was strongly linked over time with frame-wide variations in global motion, and to a lesser extent with local motion information. Similarly, stronger responses to emotional content were recorded within regions of interest whose activity was attuned to global and local motion over time. Since global motion fields are experienced during self-motion, we suggest that camera movements may induce illusory self-motion cues in viewers that interact with the movie's narrative and with other emotional cues in generating affective responses.


Subject(s)
Brain/physiology , Cues , Emotions/physiology , Eye Movements/physiology , Motion Perception/physiology , Motion Pictures , Adult , Female , Humans , Magnetic Resonance Imaging , Male , Photic Stimulation
4.
Exp Brain Res ; 225(2): 159-76, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23250443

ABSTRACT

Here, we examine how different emotions-happiness, fear, sadness and anger-affect the kinematics of locomotion. We focus on a compact representation of locomotion properties using the intersegmental law of coordination (Borghese et al. in J Physiol 494(3):863-879, 1996), which states that, during the gait cycle of human locomotion, the elevation angles of the thigh, shank and foot do not evolve independently of each other but form a planar pattern of co-variation. This phenomenon is highly robust and has been extensively studied. The orientation of the plane has been correlated with changes in the speed of locomotion and with reduction in energy expenditure as speed increases. An analytical model explaining the conditions underlying the emergence of this plane and predicting its orientation reveals that it suffices to examine the amplitudes of the elevation angles of the different segments along with the phase shifts between them (Barliya et al. in Exp Brain Res 193:371-385, 2009). We thus investigated the influence of different emotions on the parameters directly determining the orientation of the intersegmental plane and on the angular rotation profiles of the leg segments, examining both the effect of changes in walking speed and effects independent of speed. Subjects were professional actors and naïve subjects with no training in acting. As expected, emotions were found to strongly affect the kinematics of locomotion, particularly walking speed. The intersegmental coordination patterns revealed that emotional expression caused additional modifications to the locomotion patterns that could not be explained solely by a change in speed. For all emotions except sadness, the amplitude of thigh elevation angles changed from those in neutral locomotion. The intersegmental plane was also differently oriented, especially during anger. We suggest that, while speed is the dominant variable allowing discrimination between different emotional gaits, emotion can be reliably recognized in locomotion only when speed is considered together with these kinematic changes.


Subject(s)
Emotions/physiology , Gait/physiology , Locomotion/physiology , Walking/physiology , Adult , Biomechanical Phenomena/physiology , Female , Humans , Male , Orientation/physiology , Psychomotor Performance/physiology
5.
Exp Brain Res ; 193(3): 371-85, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19034442

ABSTRACT

The law of intersegmental coordination is a kinematic law that describes the coordination patterns among the elevation angles of the lower limb segments during locomotion (Borghese et al. in J Physiol 494:863-879, 1996). This coordination pattern reduces the number of degrees of freedom of the lower limb to two, i.e. the elevation angles covary along a plane in angular space. The properties of the plane that constrains the time course of the elevation angles have been extensively studied, and its orientation was found to be correlated with gait velocity and energy expenditure (Bianchi et al. in J Neurophysiol 79:2155-2170, 1998). Here, we present a mathematical model that represents the rotations of the elevation angles in terms of simple oscillators with appropriate phase shifts between them. The model explains what requirements the time courses of the elevation angles must fulfill in order for the angular covariation relationship to be planar. Moreover, an analytical formulation is proposed for both the orientation of the plane and for the eccentricity of the nearly elliptical shape that is generated within this plane, in terms of the amplitudes and relative phases of the first harmonics of the segments elevation angles. The model presented here sheds some new light on the possible interactions among the Central Pattern Generators possibly underlying the control of biped locomotion. The model precisely specifies how any two segments in the limb interact, and how a change in gait velocity affects the orientation of the intersegmental coordination plane mainly through a change in phase shifts between the segments. Implications of this study with respect to neural control of locomotion and other motor activities are discussed.


Subject(s)
Lower Extremity/physiology , Models, Biological , Walking , Adult , Algorithms , Biomechanical Phenomena , Fourier Analysis , Humans , Periodicity , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...