Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
PLoS One ; 19(5): e0298709, 2024.
Article in English | MEDLINE | ID: mdl-38743656

ABSTRACT

This is the first study to assess longitudinal changes in anthropometric, physiological, and physical qualities of international women's rugby league players. Thirteen forwards and 11 backs were tested three times over a 10-month period. Assessments included: standing height and body mass, body composition measured by dual x-ray absorptiometry (DXA), a blood panel, resting metabolic rate (RMR) assessed by indirect calorimetry, aerobic capacity (i.e.,[Formula: see text]) evaluated by an incremental treadmill test, and isometric force production measured by a force plate. During the pre-season phase, lean mass increased significantly by ~2% for backs (testing point 1: 47 kg; testing point 2: 48 kg) and forwards (testing point 1: 50 kg; testing point 2: 51 kg) (p = ≤ 0.05). Backs significantly increased their [Formula: see text] by 22% from testing point 1 (40 ml kg-1 min-1) to testing point 3 (49 ml kg-1 min-1) (p = ≤ 0.04). The [Formula: see text] of forwards increased by 10% from testing point 1 (41 ml kg-1 min-1) to testing point 3 (45 ml kg-1 min-1), however this change was not significant (p = ≥ 0.05). Body mass (values represent the range of means across the three testing points) (backs: 68 kg; forwards: 77-78 kg), fat mass percentage (backs: 25-26%; forwards: 30-31%), resting metabolic rate (backs: 7 MJ day-1; forwards: 7 MJ day-1), isometric mid-thigh pull (backs: 2106-2180 N; forwards: 2155-2241 N), isometric bench press (backs: 799-822 N; forwards: 999-1024 N), isometric prone row (backs: 625-628 N; forwards: 667-678 N) and bloods (backs: ferritin 21-29 ug/L, haemoglobin 137-140 g/L, iron 17-21 umol/L, transferrin 3 g/L, transferring saturation 23-28%; forwards: ferritin 31-33 ug/L, haemoglobin 141-145 g/L, iron 20-23 umol/L, transferrin 3 g/L, transferrin saturation 26-31%) did not change (p = ≥ 0.05). This study provides novel longitudinal data which can be used to better prepare women rugby league players for the unique demands of their sport, underpinning female athlete health.


Subject(s)
Basal Metabolism , Body Composition , Football , Humans , Female , Adult , Body Composition/physiology , Football/physiology , Longitudinal Studies , Young Adult , Anthropometry , Athletes , Absorptiometry, Photon , Exercise Test , Body Mass Index , Rugby
2.
Respir Physiol Neurobiol ; 323: 104228, 2024 May.
Article in English | MEDLINE | ID: mdl-38309488

ABSTRACT

PURPOSE: This study examined the magnitude of physiological strain imposed by repeated maximal static and dynamic apneas through assessing a panel of stress-related biomarkers. METHODS: Eleven healthy men performed on three separate occasions (≥72-h apart): a series of five repeated maximal (i) static (STA) or (ii) dynamic apneas (DYN) or (iii) a static eupneic protocol (CTL). Venous blood samples were drawn at 30, 90, and 180-min after each protocol to determine ischaemia modified albumin (IMA), neuron-specific enolase (NSE), myoglobin, and high sensitivity cardiac troponin T (hscTnT) concentrations. RESULTS: IMA was elevated after the apnoeic interventions (STA,+86%;DYN,+332%,p ≤ 0.047) but not CTL (p = 0.385). Myoglobin was higher than baseline (23.6 ± 3.9 ng/mL) 30-min post DYN (+70%,38.8 ± 13.3 ng/mL,p = 0.030). A greater myoglobin release was recorded in DYN compared with STA and CTL (p ≤ 0.035). No changes were observed in NSE (p = 0.207) or hscTnT (p = 0.274). CONCLUSIONS: Five repeated maximal DYN led to a greater muscle injury compared with STA but neither elicited myocardial injury or neuronal-parenchymal damage.


Subject(s)
Apnea , Diving , Male , Humans , Biomarkers , Myoglobin , Diving/physiology , Serum Albumin
3.
Med Sci Sports Exerc ; 56(4): 644-654, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38079307

ABSTRACT

INTRODUCTION: Heat adaptation is protective against heat illness; however, its role in heat syncope, due to reflex mechanisms, has not been conclusively established. The aim of this study was to evaluate if heat acclimation (HA) was protective against heat syncope and to ascertain underlying physiological mechanisms. METHODS: Twenty (15 males, 5 females) endurance-trained athletes were randomized to either 8 d of mixed active and passive HA (HEAT) or climatically temperate exercise (CONTROL). Before, and after, the interventions participants underwent a head up tilt (HUT) with graded lower body negative pressure (LBNP), in a thermal chamber (32.0 ± 0.3°C), continued until presyncope with measurement of cardiovascular parameters. Heat stress tests (HST) were performed to determine physiological and perceptual measures of HA. RESULTS: There was a significant increase in orthostatic tolerance (OT), as measured by HUT/LBNP, in the HEAT group (preintervention; 28 ± 9 min, postintervention; 40 ± 7 min) compared with CONTROL (preintervention; 30 ± 8 mins, postintervention; 33 ± 5 min) ( P = 0.01). Heat acclimation resulted in a significantly reduced peak and mean rectal and skin temperature ( P < 0.01), peak heat rate ( P < 0.003), thermal comfort ( P < 0.04), and rating of perceived exertion ( P < 0.02) during HST. There was a significantly increased plasma volume (PV) in the HEAT group in comparison to CONTROL ( P = 0.03). CONCLUSIONS: Heat acclimation causes improvements in OT and is likely to be beneficial in patients with heat exacerbated reflex syncope. Heat acclimation-mediated PV expansion is a potential physiological mechanism underlying improved OT.


Subject(s)
Heat Stress Disorders , Thermotolerance , Male , Female , Humans , Exercise/physiology , Skin Temperature , Syncope , Heat Stress Disorders/prevention & control , Acclimatization/physiology , Hot Temperature , Body Temperature , Heart Rate
4.
Scand J Med Sci Sports ; 32(1): 233-241, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34597427

ABSTRACT

PURPOSE: This study sought to explore, for the first time, the effects of repeated maximal static and dynamic apnoeic attempts on the physiological milieu by assessing cerebral, cardiac and striatal muscle stress-related biomarkers in a group of elite breath-hold divers (EBHD). METHODS: Sixteen healthy males were recruited (EBHD = 8; controls = 8). On two separate occasions, EBHD performed two sets of five repeated maximal static apnoeas (STA) or five repeated maximal dynamic apnoeas (DYN). Controls performed a static eupnoeic protocol to negate any effects of water immersion and diurnal variation on haematology (CTL). Venous blood samples were drawn at 30, 90, and 180 min after each protocol to determine S100ß, neuron-specific enolase (NSE), myoglobin, and high sensitivity cardiac troponin T (hscTNT) concentrations. RESULTS: S100ß and myoglobin concentrations were elevated following both apnoeic interventions (p < 0.001; p ≤ 0.028, respectively) but not after CTL (p ≥ 0.348). S100ß increased from baseline (0.024 ± 0.005 µg/L) at 30 (STA, +149%, p < 0.001; DYN, +166%, p < 0.001) and 90 min (STA, +129%, p < 0.001; DYN, +132%, p = 0.008) following the last apnoeic repetition. Myoglobin was higher than baseline (22.3 ± 2.7 ng/ml) at 30 (+42%, p = 0.04), 90 (+64%, p < 0.001) and 180 min (+49%, p = 0.013) post-STA and at 90 min (+63%, p = 0.016) post-DYN. Post-apnoeic S100ß and myoglobin concentrations were higher than CTL (STA, p < 0.001; DYN, p ≤ 0.004). NSE and hscTNT did not change from basal concentrations after the apnoeic (p ≥ 0.146) nor following the eupnoeic (p ≥ 0.553) intervention. CONCLUSIONS: This study suggests that a series of repeated maximal static and dynamic apnoeas transiently disrupt the blood-brain barrier and instigate muscle injury but do not induce neuronal-parenchymal damage or myocardial damage.


Subject(s)
Apnea , Diving , Breath Holding , Heart , Humans , Male , Muscle, Skeletal
5.
Nitric Oxide ; 113-114: 70-77, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34051342

ABSTRACT

PURPOSE: The aim was to investigate the effect of dietary nitrate supplementation (in the form of beetroot juice, BRJ) for 20 days on salivary nitrite (a potential precursor of bioactive nitric oxide), exercise performance and high altitude (HA) acclimatisation in field conditions (hypobaric hypoxia). METHODS: This was a single-blinded randomised control study of 22 healthy adult participants (12 men, 10 women, mean age 28 ± 12 years) across a HA military expedition. Participants were randomised pre-ascent to receive two 70 ml dose per day of either BRJ (~12.5 mmol nitrate per day; n = 11) or non-nitrate calorie matched control (n = 11). Participants ingested supplement doses daily, beginning 3 days prior to departure and continued until the highest sleeping altitude (4800 m) reached on day 17 of the expedition. Data were collected at baseline (44 m altitude), at 2350 m (day 9), 3400 m (day 12) and 4800 m (day 17). RESULTS: BRJ enhanced the salivary levels of nitrite (p = 0.007). There was a significant decrease in peripheral oxygen saturation and there were increases in heart rate, diastolic blood pressure, and rating of perceived exertion with increasing altitude (p=<0.001). Harvard Step Test fitness scores significantly declined at 4800 m in the control group (p = 0.003) compared with baseline. In contrast, there was no decline in fitness scores at 4800 m compared with baseline (p = 0.26) in the BRJ group. Heart rate recovery speed following exercise at 4800 m was significantly prolonged in the control group (p=<0.01) but was unchanged in the BRJ group (p = 0.61). BRJ did not affect the burden of HA illness (p = 1.00). CONCLUSIONS: BRJ increases salivary nitrite levels and ameliorates the decline in fitness at altitude but does not affect the occurrence of HA illness.


Subject(s)
Adaptation, Physiological/physiology , Exercise/physiology , Fruit and Vegetable Juices/analysis , Hypoxia/blood , Nitrates/blood , Nitrites/blood , Adult , Altitude , Dietary Supplements , Female , Humans , Male , Military Personnel , Nitrates/administration & dosage , Nitrates/metabolism
6.
Exp Physiol ; 106(1): 338-349, 2021 01.
Article in English | MEDLINE | ID: mdl-32421235

ABSTRACT

NEW FINDINGS: What is the central question of this study? Splenic contractions occur in response to apnoea-induced hypoxia with and without face immersion in water. However, the splenic responses to a series of static or dynamic apnoeas with whole-body water immersion in non-divers and elite breath-hold divers are unknown. What is the main finding and its importance? Static and dynamic apnoeas were equally effective in stimulating splenic contractions across non-divers and elite breath-hold divers. These findings demonstrate that the magnitude of the splenic response is largely dictated by the degree of the hypoxemic stress encountered during voluntary apnoeic epochs. ABSTRACT: Splenic contractions occur in response to apnoea-induced hypoxia with and without facial water immersion. However, the splenic responses to a series of static (STA) or dynamic (DYN) apnoeas with whole-body water immersion in non-divers (NDs) and elite breath-hold divers (EBHDs) are unknown. EBHD (n = 8), ND (n = 10) and control participants (n = 8) were recruited. EBHD and ND performed a series of five maximal DYN or STA on separate occasions. Control performed a static eupnoeic (STE) protocol to control against any effects of water immersion and diurnal variation on splenic volume and haematology. Heart rate (HR) and peripheral oxygen saturation (SpO2 ) were monitored for 30 s after each apnoea. Pre- and post-apnoeic splenic volumes were quantified ultrasonically, and blood samples were drawn for haematology. For EBHD and ND end-apnoeic HR was higher (P < 0.001) and SpO2 was lower in DYN (P = 0.024) versus STA. EBHD attained lower end-apnoeic SpO2 during DYN and STA than NDs (P < 0.001). Splenic contractions occurred following DYN (EBHD, -47 ± 6%; ND, -37 ± 4%; P < 0.001) and STA (EBHD, -26 ± 4%; ND, -26 ± 8%; P < 0.01). DYN-associated splenic contractions were greater than STA in EBHD only (P = 0.042). Haemoglobin concentrations were higher following DYN only (EBHD, +5 ± 8g/L  , +4 ± 2%; ND, +8 ± 3 g/L , +4.9 ± 3%; P = 0.019). Haematocrit remained unchanged after each protocol. There were no between group differences in post-apnoeic splenic volume or haematology. In both groups, splenic contractions occurred in response to STA and DYN when combined with whole-body immersion. DYN apnoeas, were effective at increasing haemoglobin concentrations but not STA apnoeas. Thus, the magnitude of the splenic response relates to the hypoxemic stress encountered during apnoeic epochs.


Subject(s)
Apnea/physiopathology , Diving/physiology , Hypoxia/physiopathology , Oxygen Saturation/physiology , Water/metabolism , Breath Holding , Heart Rate/physiology , Humans , Oxygen/blood
7.
Eur J Appl Physiol ; 121(3): 827-838, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33372236

ABSTRACT

PURPOSE: This study examined the influence of dynamic apnoea training on splenic volume and haematological responses in non-breath-hold divers (BHD). METHODS: Eight non-BHD performed ten maximal dynamic apnoeas, four times a week for  six weeks. Splenic volumes were assessed ultrasonically, and blood samples were drawn for full blood count analysis, erythropoietin, iron, ferritin, albumin, protein and osmolality at baseline, 24 h post the completion of each week's training sessions and seven days post the completion of the training programme. Additionally, blood samples were drawn for haematology at 30, 90, and 180 min post session one, twelve and twenty-four. RESULTS: Erythropoietin was only higher than baseline (6.62 ± 3.03 mlU/mL) post session one, at 90 (9.20 ± 1.88 mlU/mL, p = 0.048) and 180 min (9.04 ± 2.35 mlU/mL, p = 0.046). Iron increased from baseline (18 ± 3 µmol/L) post week five (23 ± 2 µmol/L, p = 0.033) and six (21 ± 6 µmol/L; p = 0.041), whereas ferritin was observed to be lower than baseline (111 ± 82 µg/L) post week five (95 ± 75 µg/L; p = 0.016), six (84 ± 74 µg/L; p = 0.012) and one week post-training (81 ± 63 µg/L; p = 0.008). Reticulocytes increased from baseline (57 ± 12 × 109/L) post week one (72 ± 17 × 109/L, p = 0.037) and six (71 ± 17 × 109/L, p = 0.021) while no changes were recorded in erythrocytes (p = 0.336), haemoglobin (p = 0.124) and splenic volumes (p = 0.357). CONCLUSIONS: Six weeks of dynamic apnoeic training increase reticulocytes without altering mature erythrocyte concentration and splenic volume.


Subject(s)
Erythropoiesis/physiology , Erythropoietin/metabolism , Exercise/physiology , Ferritins/metabolism , Hemoglobins/metabolism , Iron/metabolism , Spleen/physiology , Adult , Apnea/metabolism , Humans , Male , Young Adult
8.
High Alt Med Biol ; 21(2): 152-159, 2020 06.
Article in English | MEDLINE | ID: mdl-32267783

ABSTRACT

Introduction: There is evidence that intermittent hypoxic exposure (IHE) may improve high altitude (HA) performance. In this study, the effects of short-term IHE through voluntary apnea training on HA-related symptoms, including acute mountain sickness (AMS), were examined for the first time. Methods: Forty healthy adults were randomized to a self-administered apnea training (n = 19) or control (n = 21 no apnea training) group before ascent to an altitude of 5100 m in the Himalayas over 14 days. The apnea training was conducted at sea level (SL) and consisted of five breath holds per day in week 1, seven in week 2, followed by 10 per day from weeks 3 to 6 and until HA exposure. Saturation of arterial oxygen (SpO2), heart rate, sleep quality (Insomnia Severity Index [ISI]), rating of perceived exertion (RPE), blood pressure, and Lake Louise scores were measured at SL (in the United Kingdom) and at HA at 1400, 2700, 3400-3700, 4050-4200, 4800, and 5100-5200 m. Anxiety (Generalized Anxiety Disorder-7 [GAD-7]) scores were examined at SL, 1400, and 5100-5200 m. Results: Apnea training led to a significant increase in the mean longest breath-hold times from baseline (80.42 ± 32.49 [median 87.00] seconds) to the end of week 6 (107.02 ± 43.65 [113.00] seconds), respectively (p = 0.009). There was no significant difference in the prevalence of AMS (8/19 = 42.1% vs. 11/21 = 52.4%; RR 0.80; 95% confidence interval 0.41-1.57: p = 0.80) or in GAD-7, ISI and RPE, SpO2, heart rate, or blood pressure among the apnea versus control groups, respectively, at HA. Conclusions: Apnea training does not lessen HA-related symptoms in healthy adults traveling up to 5200 m. Larger studies using more challenging apnea protocols and at higher altitudes should be considered.


Subject(s)
Altitude Sickness , Altitude , Acclimatization , Adult , Apnea , Breath Holding , Humans , United Kingdom
9.
J Strength Cond Res ; 34(3): 828-837, 2020 Mar.
Article in English | MEDLINE | ID: mdl-29939897

ABSTRACT

Robertson, C, Lodin-Sundström, A, O'Hara, J, King, R, Wainwright, B, and Barlow, M. Effects of pre-race apneas on 400-m freestyle swimming performance. J Strength Cond Res 34(3): 828-837, 2020-This study aimed to establish whether a series of 3 apneas before a 400-m freestyle time-trial affected swimming performance when compared with and combined with a warm-up. Nine (6 males and 3 females) regional to national standard swimmers completed four 400-m freestyle time-trials in 4 randomized conditions: without warm-up or apneas (CON), warm-up only (WU), apneas only (AP), and warm-up and apneas (WUAP). Time-trial performance was significantly improved after WUAP (275.79 ± 12.88 seconds) compared with CON (278.66 ± 13.31 seconds, p = 0.035) and AP (278.64 ± 4.10 seconds, p = 0.015). However, there were no significant differences between the WU (276.01 ± 13.52 seconds, p > 0.05) and other interventions. Spleen volume compared with baseline was significantly reduced after the apneas by a maximum of ∼45% in the WUAP and by ∼20% in WU. This study showed that the combination of a warm-up with apneas could significantly improve 400-m freestyle swim performance compared with a control and apnea intervention. Further investigation into whether long-term apnea training can enhance this response is justified.


Subject(s)
Apnea/physiopathology , Athletic Performance/physiology , Swimming/physiology , Warm-Up Exercise/physiology , Adolescent , Cross-Over Studies , Female , Humans , Male , Young Adult
10.
Eur J Appl Physiol ; 119(11-12): 2557-2565, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31563983

ABSTRACT

PURPOSE: Serum erythropoietin (EPO) concentration is increased following static apnoea-induced hypoxia. However, the acute erythropoietic responses to a series of dynamic apnoeas in non-divers (ND) or elite breath-hold divers (EBHD) are unknown. METHODS: Participants were stratified into EBHD (n = 8), ND (n = 10) and control (n = 8) groups. On two separate occasions, EBHD and ND performed a series of five maximal dynamic apnoeas (DYN) or two sets of five maximal static apnoeas (STA). Control performed a static eupnoeic (STE) protocol to control against any effects of water immersion and diurnal variation on EPO. Peripheral oxygen saturation (SpO2) levels were monitored up to 30 s post each maximal effort. Blood samples were collected at 30, 90, and 180 min after each protocol for EPO, haemoglobin and haematocrit concentrations. RESULTS: No between group differences were observed at baseline (p > 0.05). For EBHD and ND, mean end-apnoea SpO2 was lower in DYN (EBHD, 62 ± 10%, p = 0.024; ND, 85 ± 6%; p = 0.020) than STA (EBHD, 76 ± 7%; ND, 96 ± 1%) and control (98 ± 1%) protocols. EBHD attained lower end-apnoeic SpO2 during DYN and STA than ND (p < 0.001). Serum EPO increased from baseline following the DYN protocol in EBHD only (EBHD, p < 0.001; ND, p = 0.622). EBHD EPO increased from baseline (6.85 ± 0.9mlU/mL) by 60% at 30 min (10.82 ± 2.5mlU/mL, p = 0.017) and 63% at 180 min (10.87 ± 2.1mlU/mL, p = 0.024). Serum EPO did not change after the STA (EBHD, p = 0.534; ND, p = 0.850) and STE (p = 0.056) protocols. There was a significant negative correlation (r = - 0.49, p = 0.003) between end-apnoeic SpO2 and peak post-apnoeic serum EPO concentrations. CONCLUSIONS: The novel findings demonstrate that circulating EPO is only increased after DYN in EBHD. This may relate to the greater hypoxemia achieved by EBHD during the DYN.


Subject(s)
Apnea/blood , Diving/physiology , Erythropoietin/blood , Breath Holding , Humans , Male , Oxygen/blood
11.
Eur J Appl Physiol ; 119(11-12): 2499-2511, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31542805

ABSTRACT

PURPOSE: The aim of the study was to provide an evaluation of the oxygen transport, exchange and storage capacity of elite breath-hold divers (EBHD) compared with non-divers (ND). METHODS: Twenty-one healthy males' (11 EBHD; 10 ND) resting splenic volumes were assessed by ultrasound and venous blood drawn for full blood count analysis. Percutaneous skeletal muscle biopsies were obtained from the m. vastus lateralis to measure capillarisation, and fibre type-specific localisation and distribution of myoglobin and mitochondrial content using quantitative immunofluorescence microscopy. RESULTS: Splenic volume was not different between groups. Reticulocytes, red blood cells and haemoglobin concentrations were higher (+ 24%, p < 0.05; + 9%, p < 0.05; + 3%, p < 0.05; respectively) and mean cell volume was lower (- 6.5%, p < 0.05) in the EBHD compared with ND. Haematocrit was not different between groups. Capillary density was greater (+ 19%; p < 0.05) in the EBHD. The diffusion distance (R95) was lower in type I versus type II fibres for both groups (EBHD, p < 0.01; ND, p < 0.001), with a lower R95 for type I fibres in the EBHD versus ND (- 13%, p < 0.05). Myoglobin content was higher in type I than type II fibres in EBHD (+ 27%; p < 0.01) and higher in the type I fibres of EBHD than ND (+ 27%; p < 0.05). No fibre type differences in myoglobin content were observed in ND. Mitochondrial content was higher in type I than type II fibres in EBHD (+ 35%; p < 0.05), with no fibre type differences in ND or between groups. CONCLUSIONS: In conclusion, EBDH demonstrate enhanced oxygen storage in both blood and skeletal muscle and a more efficient oxygen exchange capacity between blood and skeletal muscle versus ND.


Subject(s)
Diving/physiology , Muscle, Skeletal/physiology , Breath Holding , Capillaries/metabolism , Capillaries/physiology , Humans , Male , Muscle, Skeletal/metabolism , Oxygen/metabolism
12.
BMJ Case Rep ; 12(5)2019 May 13.
Article in English | MEDLINE | ID: mdl-31088814

ABSTRACT

A 55-year-old man with poorly controlled type 1 diabetes with microvascular and macrovascular complications presented with a 1-week history of painful erythematous swelling on the dorsum of the left foot with two areas of foot ulceration. Inflammatory markers were raised. MRI of the left foot revealed a soft tissue swelling on the dorsum of the left foot, marrow oedema and destruction of several small joints of the foot, indicating osteomyelitis and Charcot neuroarthropathy (CN). The soft tissue swelling on the dorsum of the left foot was debrided; per-operatively bone destruction of base of the fifth metatarsal was found. The patient received intravenous antibiotics for 6 weeks. The clinical features of CN including erythema, oedema and elevated temperature of the left foot settled with off-loading the foot in an air cast walker after 6 months. Our case highlights the need to recognise CN in an acutely inflamed foot of diabetic patients with neuropathy, even when other conditions like soft tissue infection and osteomyelitis can explain the clinical features.


Subject(s)
Arthropathy, Neurogenic/etiology , Diabetic Foot/complications , Diabetic Neuropathies/complications , Osteomyelitis/complications , Arthropathy, Neurogenic/diagnosis , Arthropathy, Neurogenic/pathology , Arthropathy, Neurogenic/surgery , Debridement , Humans , Male , Middle Aged
13.
Physiol Rep ; 7(1): e13965, 2019 01.
Article in English | MEDLINE | ID: mdl-30604931

ABSTRACT

Declines in endothelial function can take place rapidly across the menopause transition, placing women at heightened risk for atherosclerosis. Disturbed patterns of conduit artery shear, characterized by greater oscillatory and retrograde shear, are associated with endothelial dysfunction but have yet to be described across menopause. Healthy women, who were not on hormone therapy or contraceptives, were classified into early perimenopausal, late perimenopausal, and early postmenopausal stage. Resting antegrade, retrograde, and oscillatory shear were calculated from blood velocity and diameter measured in the brachial and common femoral artery using Doppler ultrasound. Serum was collected for measurements of estradiol, follicle-stimulating hormone (FSH), and luteinizing hormone. After adjusting for age, brachial artery oscillatory shear was significantly higher in early postmenopausal women (n = 15, 0.17 ± 0.08 a.u.) than both early (n = 12, 0.08 ± 0.05 a.u., P < 0.05) and late (n = 8, 0.08 ± 0.04 a.u) perimenopausal women, and retrograde shear was significantly greater in early postmenopausal versus early perimenopausal women (-19.47 ± 12.97 vs. -9.62 ± 6.11 sec-1 , both P < 0.05). Femoral artery oscillatory and retrograde shear were greater, respectively, in early postmenopausal women (n = 15, 0.19 ± 0.08 a.u.; -13.57 ± 5.82 sec-1 ) than early perimenopausal women (n = 14, 0.11 ± 0.08 a.u.; -8.13 ± 4.43 sec-1 , P < 0.05). Further, Pearson correlation analyses revealed significant associations between FSH and both retrograde and oscillatory shear, respectively, in the brachial (r = -0.40, P = 0.03; r = 0.43, P = 0.02) and common femoral artery (r = -0.45, P = 0.01; r = 0.56, P = 0.001). These results suggest menopause, and its associated changes in reproductive hormones, adversely influences conduit arterial shear rate patterns to greater oscillatory and retrograde shear rates.


Subject(s)
Arteries/physiology , Hemorheology , Menopause/physiology , Adult , Arteries/diagnostic imaging , Endothelium, Vascular/physiology , Estradiol/blood , Female , Follicle Stimulating Hormone/blood , Humans , Luteinizing Hormone/blood , Menopause/blood , Middle Aged
14.
Sportverletz Sportschaden ; 33(4): 224-231, 2019 Dec.
Article in German | MEDLINE | ID: mdl-29169200

ABSTRACT

BACKGROUND: High-risk sports, particularly climbing, kayaking and extreme skiing, have become increasingly popular. The most widely used psychological survey instrument with regard to risk behaviour in sports is the Sensation Seeking Model, mostly assessed by the Sensation Seeking Scale (SSS-V). Until recently, the literature discussed risk behaviour solely through this model. However, this scale does not measure risk-taking behaviours. In contrast, the Risk-Taking Behaviour Scale (RBS-K) is a three-item scale that measures risk behaviour in high-risk sports. This study aimed to validate a German language version of the RBS-K. METHODS: The RBS-K was translated and back-translated between English and German. High-risk sports participants (n = 2399) completed the German version of the RBS-K. Of those participants, 820 completed the RBS-K in person as part of a field survey and 1579 participated in an online survey. To validate the questionnaire, the SSS-V, accident involvement, age and sex were evaluated. The RBS-K divides the sample into deliberate risk takers (mean + standard deviation) and risk-averse persons (mean - standard deviation). We tested for internal consistency and correlations with SSS-V, age, sex and accident involvement. Group differences were calculated between deliberate risk takers and risk-averse persons. RESULTS: For internal consistency, we obtained a Cronbach's alpha of 0.56 and a McDonald's omega of 0.63. Significant correlations were shown between RBS-K and SSS-V as well as age and sex. Compared to risk-averse persons (n = 643, 26.8 %), deliberate risk takers (n = 319, 13.3 %) scored significantly higher in sensation seeking, were significantly younger and primarily male and had a significantly higher accident involvement. CONCLUSION: The RBS-K discriminates well for age, sex and accident involvement. Also, correlations between the RBS-K and the well-established SSS-V are acceptable. With regard to the results and its compact design, the scale seems to be well suited for field surveys. We discuss the relatively modest internal consistency in the context of the small number of items and the different dimensions of risk-taking.


Subject(s)
Language , Risk-Taking , Sports/classification , Surveys and Questionnaires , Germany , Humans , Reproducibility of Results
15.
J Clin Densitom ; 21(3): 429-443, 2018.
Article in English | MEDLINE | ID: mdl-29754949

ABSTRACT

Dual-energy X-ray absorptiometry (DXA) is a medical imaging device which has become the method of choice for the measurement of body composition in athletes. The objectives of this review were to evaluate published longitudinal DXA body composition studies in athletic populations for interpretation of "meaningful" change, and to propose a best practice measurement protocol. An online search of PubMed and CINAHL via EBSCO Host and Web of Science enabled the identification of studies published until November 2016. Those that met the inclusion criteria were reviewed independently by 2 authors according to their methodological quality and interpretation of body composition change. Twenty-five studies published between 1996 and November 2016 were reviewed (male athletes: 13, female athletes: 3, mixed: 9) and sample sizes ranged from n = 1 to 212. The same number of eligible studies was published between 2013 and 2016, as over the 16 yr prior (between 1996 and 2012). Seven did not include precision error, and fewer than half provided athlete-specific precision error. There were shortfalls in the sample sizes on which precision estimates were based and inconsistencies in the level of pre-scan standardization, with some reporting full standardization protocols and others reporting only single (e.g., overnight fast) or no control measures. There is a need for standardized practice and reporting in athletic populations for the longitudinal measurement of body composition using DXA. Based on this review and those of others, plus the official position of the International Society for Clinical Densitometry, our recommendations and protocol are proposed as a guide to support best practice.


Subject(s)
Absorptiometry, Photon/methods , Body Composition , Sports/physiology , Absorptiometry, Photon/standards , Evidence-Based Medicine , Humans , Practice Guidelines as Topic
16.
J Clin Densitom ; 21(3): 399-405, 2018.
Article in English | MEDLINE | ID: mdl-28693882

ABSTRACT

The skeleton of a cricket fast bowler is exposed to a unique combination of gravitational and torsional loading in the form of substantial ground reaction forces delivered through the front landing foot, and anterior-posterior shear forces mediated by regional muscle contractions across the lumbo-pelvic region. The objectives of this study were to compare the hip structural characteristics of elite fast bowlers with recreationally active age-matched controls, and to examine unilateral bone properties in fast bowlers. Dual-energy X-ray absorptiometry of the proximal femur was performed in 26 elite male fast bowlers and 26 normally active controls. Hip structural analysis (GE Lunar; enCORE version 15.0) determined areal bone mineral density (BMD) of the proximal femur, and cross-sectional area, section modulus (Z), cross-sectional moment of inertia, and femoral strength index at the narrow region of the femoral neck. Mean femoral neck and trochanter BMD were greater in fast bowlers than in controls (p <0.001). All bone geometry properties, except for cross-sectional moment of inertia, were superior in fast bowlers (p <0.05) following adjustment for height and lean mass. There were no asymmetries in BMD or bone geometry when considering leg dominance of the fast bowlers (p > 0.05). Elite fast bowlers have superior bone characteristics of the proximal femur, with results inferring enhanced resistance to axial compression (cross-sectional area), and bending (Z) forces, and enhanced strength to withstand a fall impact as indicated by their higher femoral strength index. No asymmetries in hip bone properties were identified, suggesting that both torsional and gravitational loading offer significant osteogenic potential.


Subject(s)
Bone Density , Femur Neck/anatomy & histology , Femur Neck/diagnostic imaging , Sports/physiology , Adolescent , Adult , Gravitation , Humans , Male , Osteogenesis , Torsion, Mechanical , Young Adult
17.
J Sports Sci ; 36(3): 266-271, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28281879

ABSTRACT

This study investigated the change in body composition and bone mineral content (BMC) of senior rugby league (RL) players between 2008 and 2014. Twelve male professional RL players (age, 24.6 ± 4.0 years; stature, 183.4 ± 8.4 cm) received a dual-energy X-ray absorptiometry scan during preseason in 2008 and 2014. Between 2008 and 2014, very likely increases in leg lean mass (LM), total trunk and leg BMC, and a likely increase in arm BMC and possible increases in body mass (BM), total and trunk fat mass (FM), and total, trunk and arm LM were observed. Unlikely decreases and unclear changes in leg and arm FM were also found. Large negative correlations were observed between age and BM (r = -0.72), LM (r = -0.70), FM (r = -0.61) and BMC (r = -0.84) change. Three participants (19.1 ± 1.6 years) increased LM by 7.0-9.3 kg. Younger players had the largest increases in LM during this period, although an older player (30-year old) still increased LM. Differences in body composition change were also observed for participants of the same age, thus contextual factors should be considered. This study demonstrates the individuality of body composition changes in senior professional rugby players, while considering the potential change in young athletes.


Subject(s)
Body Composition/physiology , Bone Density/physiology , Football/physiology , Absorptiometry, Photon , Adult , Age Factors , Arm/anatomy & histology , Humans , Leg/anatomy & histology , Longitudinal Studies , Male , Time Factors , Torso/anatomy & histology , Young Adult
18.
Int J Sport Nutr Exerc Metab ; 28(5): 497-501, 2018 Sep 01.
Article in English | MEDLINE | ID: mdl-29091471

ABSTRACT

INTRODUCTION: The purpose of the present study was to assess the effects of acute nitrate ([Formula: see text])-rich beetroot juice (BRJ) supplementation on peripheral oxygen saturation (SpO2), heart rate (HR), and pulmonary gas exchange during submaximal static and dynamic apnea. METHODS: Nine (six males and three females) trained apneists (age: 39.6 ± 8.2 years, stature: 170.4 ± 11.5 cm, and body mass: 72.0 ± 11.5 kg) performed three submaximal static apneas at 60%, 70%, and 80% of the participant's current reported personal best time, followed by three submaximal (∼75% or personal best distance) dynamic apneas following the consumption of either a 70-ml concentrated BRJ (7.7 mmol [Formula: see text]) or a [Formula: see text]-depleted placebo (PLA; 0.1 mmol [Formula: see text]) in double-blind randomized manner. HR and SpO2 were measured via fingertip pulse oximetry at the nadir, and online gas analysis was used to assess pulmonary oxygen uptake ([Formula: see text]) during recovery following breath-holds. RESULTS: There were no differences (p < .05) among conditions for HR (PLA = 59 ± 11 bpm and BRJ = 61 ± 12 bpm), SpO2 (PLA = 83% ± 14% and BRJ = 84% ±9%), or [Formula: see text] (PLA = 1.00 ± 0.22 L/min and BRJ = 0.97 ± 0.27 L/min). CONCLUSION: The consumption of 7.7 mmol of beetroot juice supplementation prior to a series of submaximal static and dynamic apneas did not induce a significant change in SpO2, HR, and [Formula: see text] when compared with placebo. Therefore, there is no apparent physiological response that may benefit free divers as a result of the supplementation.


Subject(s)
Athletic Performance , Beta vulgaris , Breath Holding , Dietary Supplements , Fruit and Vegetable Juices , Nitrates/administration & dosage , Sports Nutritional Physiological Phenomena , Adult , Double-Blind Method , Female , Humans , Male , Middle Aged , Oximetry
19.
Sports Med ; 47(11): 2155-2169, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28577258

ABSTRACT

Exposure to altitude results in multiple physiological consequences. These include, but are not limited to, a reduced maximal oxygen consumption, drop in arterial oxygen saturation, and increase in muscle metabolic perturbations at a fixed sub-maximal work rate. Exercise capacity during fixed work rate or incremental exercise and time-trial performance are also impaired at altitude relative to sea level. Recently, dietary nitrate (NO3-) supplementation has attracted considerable interest as a nutritional aid during altitude exposure. In this review, we summarise and critically evaluate the physiological and performance effects of dietary NO3- supplementation during exposure to simulated and terrestrial altitude. Previous investigations at simulated altitude indicate that NO3- supplementation may reduce the oxygen cost of exercise, elevate arterial and tissue oxygen saturation, improve muscle metabolic function, and enhance exercise capacity/performance. Conversely, current evidence suggests that NO3- supplementation does not augment the training response at simulated altitude. Few studies have evaluated the effects of NO3- at terrestrial altitude. Current evidence indicates potential improvements in endothelial function at terrestrial altitude following NO3- supplementation. No effects of NO3- supplementation have been observed on oxygen consumption or arterial oxygen saturation at terrestrial altitude, although further research is warranted. Limitations of the present body of literature are discussed, and directions for future research are provided.


Subject(s)
Altitude , Athletic Performance/physiology , Beta vulgaris/chemistry , Dietary Supplements , Nitrates/administration & dosage , Exercise , Humans , Nitrites/blood , Oxygen/blood , Oxygen Consumption/physiology
20.
Front Physiol ; 8: 401, 2017.
Article in English | MEDLINE | ID: mdl-28649204

ABSTRACT

Purpose: Nitric oxide (NO) bioavailability is reduced during acute altitude exposure, contributing toward the decline in physiological and cognitive function in this environment. This study evaluated the effects of nitrate ([Formula: see text]) supplementation on NO bioavailability, physiological and cognitive function, and exercise performance at moderate and very-high simulated altitude. Methods:Ten males (mean (SD): [Formula: see text]: 60.9 (10.1) ml·kg-1·min-1) rested and performed exercise twice at moderate (~14.0% O2; ~3,000 m) and twice at very-high (~11.7% O2; ~4,300 m) simulated altitude. Participants ingested either 140 ml concentrated [Formula: see text]-rich (BRJ; ~12.5 mmol [Formula: see text]) or [Formula: see text]-deplete (PLA; 0.01 mmol [Formula: see text]) beetroot juice 2 h before each trial. Participants rested for 45 min in normobaric hypoxia prior to completing an exercise task. Exercise comprised a 45 min walk at 30% [Formula: see text] and a 3 km time-trial (TT), both conducted on a treadmill at a 10% gradient whilst carrying a 10 kg backpack to simulate altitude hiking. Plasma nitrite concentration ([[Formula: see text]]), peripheral oxygen saturation (SpO2), pulmonary oxygen uptake ([Formula: see text]), muscle and cerebral oxygenation, and cognitive function were measured throughout. Results: Pre-exercise plasma [[Formula: see text]] was significantly elevated in BRJ compared with PLA (p = 0.001). Pulmonary [Formula: see text] was reduced (p = 0.020), and SpO2 was elevated (p = 0.005) during steady-state exercise in BRJ compared with PLA, with similar effects at both altitudes. BRJ supplementation enhanced 3 km TT performance relative to PLA by 3.8% [1,653.9 (261.3) vs. 1718.7 (213.0) s] and 4.2% [1,809.8 (262.0) vs. 1,889.1 (203.9) s] at 3,000 and 4,300 m, respectively (p = 0.019). Oxygenation of the gastrocnemius was elevated during the TT consequent to BRJ (p = 0.011). The number of false alarms during the Rapid Visual Information Processing Task tended to be lower with BRJ compared with PLA prior to altitude exposure (p = 0.056). Performance in all other cognitive tasks did not differ significantly between BRJ and PLA at any measurement point (p ≥ 0.141). Conclusion: This study suggests that BRJ improves physiological function and exercise performance, but not cognitive function, at simulated moderate and very-high altitude.

SELECTION OF CITATIONS
SEARCH DETAIL
...