Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
2.
Int J Mol Sci ; 24(16)2023 Aug 17.
Article in English | MEDLINE | ID: mdl-37629075

ABSTRACT

The tumor microenvironment (TME) has gained considerable scientific attention by playing a role in immunosuppression and tumorigenesis. Besides tumor cells, TME is composed of various other cell types, including cancer-associated fibroblasts (CAFs or MAFs when referring to melanoma-derived CAFs) and tumor-infiltrating lymphocytes (TILs), a subpopulation of which is labeled as γδ T cells. Since the current anti-cancer therapies using γδ T cells in various cancers have exhibited mixed treatment responses, to better understand the γδ T cell biology in melanoma, our research group aimed to investigate whether activated γδ T cells are capable of killing MAFs. To answer this question, we set up an in vitro platform using freshly isolated Vδ2-type γδ T cells and cultured MAFs that were biobanked from our melanoma patients. This study proved that the addition of zoledronic acid (1-2.5 µM) to the γδ T cells was necessary to drive MAFs into apoptosis. The MAF cytotoxicity of γδ T cells was further enhanced by using the stimulatory clone 20.1 of anti-BTN3A1 antibody but was reduced when anti-TCR γδ or anti-BTN2A1 antibodies were used. Since the administration of zoledronic acid is safe and tolerable in humans, our results provide further data for future clinical studies on the treatment of melanoma.


Subject(s)
Cancer-Associated Fibroblasts , DiGeorge Syndrome , Melanoma , Humans , Zoledronic Acid/pharmacology , Fibroblasts , Tumor Microenvironment
3.
J Mol Diagn ; 25(8): 555-568, 2023 08.
Article in English | MEDLINE | ID: mdl-37088137

ABSTRACT

Pediatric acute myeloid leukemia (AML) represents a major cause of childhood leukemic mortality, with only a limited number of studies investigating the molecular landscape of the disease. Here, we present an integrative analysis of cytogenetic and molecular profiles of 75 patients with pediatric AML from a multicentric, real-world patient cohort treated according to AML Berlin-Frankfurt-Münster protocols. Targeted next-generation sequencing of 54 genes revealed 17 genes that were recurrently mutated in >5% of patients. Considerable differences were observed in the mutational profiles compared with previous studies, as BCORL1, CUX1, KDM6A, PHF6, and STAG2 mutations were detected at a higher frequency than previously reported, whereas KIT, NRAS, and KRAS were less frequently mutated. Our study identified novel recurrent mutations at diagnosis in the BCORL1 gene in 9% of the patients. Tumor suppressor gene (PHF6, TP53, and WT1) mutations were found to be associated with induction failure and shorter event-free survival, suggesting important roles of these alterations in resistance to therapy and disease progression. Comparison of the mutational landscape at diagnosis and relapse revealed an enrichment of mutations in tumor suppressor genes (16.2% versus 44.4%) and transcription factors (35.1% versus 55.6%) at relapse. Our findings shed further light on the heterogeneity of pediatric AML and identify previously unappreciated alterations that may lead to improved molecular characterization and risk stratification of pediatric AML.


Subject(s)
Leukemia, Myeloid, Acute , Nucleophosmin , Humans , Child , Mutation , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/genetics , High-Throughput Nucleotide Sequencing , Recurrence , Genomics
4.
Int J Mol Sci ; 24(6)2023 Mar 18.
Article in English | MEDLINE | ID: mdl-36982875

ABSTRACT

The oral, highly selective Bcl2 inhibitor venetoclax has substantially improved the therapeutic landscape of chronic lymphocytic leukemia (CLL). Despite the remarkable response rates in patients with relapsed/refractory (R/R) disease, acquired resistance is the leading cause of treatment failure, with somatic BCL2 mutations being the predominant genetic drivers underpinning venetoclax resistance. To assess the correlation between disease progression and the most common BCL2 mutations G101V and D103Y, sensitive (10-4) screening for the most common BCL2 mutations G101V and D103Y was performed in 67 R/R CLL patients during venetoclax single-agent or venetoclax-rituximab combination therapy. With a median follow-up time of 23 months, BCL2 G101V and D103Y were detected in 10.4% (7/67) and 11.9% (8/67) of the cases, respectively, with four patients harboring both resistance mutations. Ten out of eleven patients carrying BCL2 G101V and/or D103Y experienced relapse during the follow-up period, representing 43.5% of the cases (10/23) showing clinical signs of disease progression. All BCL2 G101V or D103Y variants were detected in patients receiving venetoclax as a continuous single-agent treatment while these mutations were not observed during or after fixed-duration venetoclax therapy. Targeted ultra-deep sequencing of BCL2 uncovered three additional variants in four patient samples obtained at relapse, suggesting convergent evolution and implying a cooperating role of BCL2 mutations in driving venetoclax resistance. This cohort is the largest R/R CLL patient population reported to date in which BCL2 resistance mutations were investigated. Our study demonstrates the feasibility and clinical value of sensitive screening for BCL2 resistance mutations in R/R CLL.


Subject(s)
Antineoplastic Agents , Leukemia, Lymphocytic, Chronic, B-Cell , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Drug Resistance, Neoplasm/genetics , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Recurrence , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Mutation , Proto-Oncogene Proteins c-bcl-2/genetics , Disease Progression
5.
Pathol Oncol Res ; 28: 1610659, 2022.
Article in English | MEDLINE | ID: mdl-36213161

ABSTRACT

Background: Ibrutinib is widely known as an effective and well-tolerated therapeutical choice of the chronic lymphocytic leukaemia (CLL). However, acquired resistance may occur during the treatment, causing relapse. Early detection of ibrutinib resistance is an important issue, therefore we aimed to find phenotypic markers on CLL cells the expression of which may correlate with the appearance of ibrutinib resistance. Methods: We examined 28 patients' peripheral blood (PB) samples (treatment naïve, ibrutinib sensitive, clinically ibrutinib resistant). The surface markers' expression (CD27, CD69, CD86, CD184, CD185) were measured by flow cytometry. Furthermore, the BTKC481S resistance mutation was assessed by digital droplet PCR. Moreover, the CLL cells' phenotype of a patient with acquired ibrutinib resistance was observed during the ibrutinib treatment. Results: The expression of CD27 (p = 0.030) and CD86 (p = 0.031) became higher in the clinically resistant cohort than in the ibrutinib sensitive cohort. Besides, we found that high CD86 and CD27 expressions were accompanied by BTKC481S mutation. Our prospective study showed that the increase of the expression of CD27, CD69 and CD86 was noticed ahead of the clinical resistance with 3 months. Conclusion: Our study suggests that the changes of the expression of these markers could indicate ibrutinib resistance and the examination of these phenotypic changes may become a part of the patients' follow-up in the future.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Adenine/analogs & derivatives , Agammaglobulinaemia Tyrosine Kinase/genetics , Agammaglobulinaemia Tyrosine Kinase/metabolism , Drug Resistance, Neoplasm/genetics , Flow Cytometry , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Piperidines , Prospective Studies , Protein Kinase Inhibitors/therapeutic use , Pyrazoles/therapeutic use , Pyrimidines/therapeutic use
6.
Brain Behav ; 12(10): e2732, 2022 10.
Article in English | MEDLINE | ID: mdl-36111748

ABSTRACT

OBJECTIVES: Stroke-induced immunosuppression (SIIS) increases the risk of poststroke infections. We aimed to determine whether failed versus successful thrombolytic therapy (TT) resulted in SIIS-associated changes in peripheral granulocyte markers at 1 week following the insult. METHODS: We collected peripheral blood samples from 19 patients with acute ischemic stroke undergoing TT within 6 h after the onset of their first symptoms and 7 days after the insult. Age-matched controls were sampled on one occasion. We compared the expression of CD15 and CD64 on monocytes, granulocytes, and lymphocytes using flow cytometry. RESULTS: The proportion of granulocytes and CD15+ granulocytes was comparable between controls and stroke patients at both time points. While the proportion of CD15bright granulocytes was also comparable, the mean fluorescence intensity (MFI) of CD15 on this subset was reduced in stroke patients by day 7 but was overall higher at both time points compared to controls. The MFI of CD15 on granulocytes was lower in stroke patients with failed TT than in those with successful TT 1 week after the insult. CONCLUSIONS: Our current results indicate that TT may not only acutely reduce the systemic inflammatory response following stroke but may also play a role in reversing SIIS at a later stage following the insult, as reflected by the higher expression of the CD15 marker on granulocytes following successful TT.


Subject(s)
Ischemic Stroke , Stroke , Biomarkers , Granulocytes/physiology , Humans , Immunosuppression Therapy , Stroke/drug therapy , Thrombolytic Therapy
7.
Cancers (Basel) ; 14(7)2022 Apr 03.
Article in English | MEDLINE | ID: mdl-35406592

ABSTRACT

Folic acid (FA) is a synthetic form of vitamin B9, generally used as a nutritional supplement and an adjunctive medication in cancer therapy. FA is involved in genetic and epigenetic regulation; therefore, it has a dual modulatory role in established neoplasms. We aimed to investigate the effect of short-term (72 h) FA supplementation on colorectal cancer; hence, HT-29 and SW480 cells were exposed to different FA concentrations (0, 100, 10,000 ng/mL). HT-29 cell proliferation and viability levels elevated after 100 ng/mL but decreased for 10,000 ng/mL FA. Additionally, a significant (p ≤ 0.05) improvement of genomic stability was detected in HT-29 cells with micronucleus scoring and comet assay. Conversely, the FA treatment did not alter these parameters in SW480 samples. RRBS results highlighted that DNA methylation changes were bidirectional in both cells, mainly affecting carcinogenesis-related pathways. Based on the microarray analysis, promoter methylation status was in accordance with FA-induced expression alterations of 27 genes. Our study demonstrates that the FA effect was highly dependent on the cell type, which can be attributed to the distinct molecular background and the different expression of proliferation- and DNA-repair-associated genes (YWHAZ, HES1, STAT3, CCL2). Moreover, new aspects of FA-regulated DNA methylation and consecutive gene expression were revealed.

8.
Cytometry A ; 101(2): 159-166, 2022 02.
Article in English | MEDLINE | ID: mdl-34296508

ABSTRACT

Plasma cell myeloma (multiple myeloma [MM]) is a malignant neoplasm originating from the plasma cells. Besides other methods, flow cytometric analysis of the patient's bone marrow aspirate has an important role in the diagnosis and also in the response assessment. Since the cell surface markers, used for identifying abnormal plasma cells, are expressed diversely and the treatment can also alter the phenotype of the plasma cells, there is an increasing demand for new plasma cell markers. VS38c is a monoclonal antibody that recognizes the CLIMP-63 protein in the membrane of the endoplasmic reticulum. CLIMP-63 is known to be expressed at high levels in normal and pathologic plasma cells in the bone marrow, thus VS38c antibody can be used to identify them. Although VS38c staining of plasma cells is reported to be constant and strong even in myeloma, we were wondering whether sample preparation can affect the staining. We have investigated the effect of different permeabilization agents and washing of the cells on the quality of the VS38c staining and found that in many cases the staining is inadequate to identify the plasma cells. We measured the VS38c staining of the bone marrow aspirates of 196 MM patients and observed that almost all cases showed bright staining with VS38c. However, permeabilization with mild detergent resulted in the appearance of a significant VS38cdim subpopulation, which showed increased sensitivity to mechanical stress (centrifugation). Our results indicate that VS38cdim MM cells can appear due to the improper permeabilization of the endoplasmic reticulum and this finding raises the possibility of the existence of a plasma cell subpopulation with different membrane properties. The significance of this population is unclear yet, but these cells can be easily missed with VS38c staining and can be lost due to centrifugation-induced lysis during sample preparation.


Subject(s)
Multiple Myeloma , Antibodies, Monoclonal , Bone Marrow/pathology , Flow Cytometry/methods , Humans , Immunophenotyping , Multiple Myeloma/diagnosis , Plasma Cells/metabolism , Plasma Cells/pathology
9.
Cancers (Basel) ; 13(23)2021 Dec 06.
Article in English | MEDLINE | ID: mdl-34885257

ABSTRACT

Monitoring of minimal residual disease (MRD) by flow cytometry (FCM) is a powerful prognostic tool for predicting outcomes in acute lymphoblastic leukemia (ALL). To apply FCM-MRD in large, collaborative trials, dedicated laboratory staff must be educated to concordantly high levels of expertise and their performance quality should be continuously monitored. We sought to install a unique and comprehensive training and quality control (QC) program involving a large number of reference laboratories within the international Berlin-Frankfurt-Münster (I-BFM) consortium, in order to complement the standardization of the methodology with an educational component and persistent quality control measures. Our QC and quality assurance (QA) program is based on four major cornerstones: (i) a twinning maturation program, (ii) obligatory participation in external QA programs (spiked sample send around, United Kingdom National External Quality Assessment Service (UK NEQAS)), (iii) regular participation in list-mode-data (LMD) file ring trials (FCM data file send arounds), and (iv) surveys of independent data derived from trial results. We demonstrate that the training of laboratories using experienced twinning partners, along with continuous educational feedback significantly improves the performance of laboratories in detecting and quantifying MRD in pediatric ALL patients. Overall, our extensive education and quality control program improved inter-laboratory concordance rates of FCM-MRD assessments and ultimately led to a very high conformity of risk estimates in independent patient cohorts.

10.
Int J Mol Sci ; 22(15)2021 Jul 27.
Article in English | MEDLINE | ID: mdl-34360785

ABSTRACT

Metabolic alteration is characteristic during tumour growth and therapy; however, targeting metabolic rewiring could overcome therapy resistance. mTOR hyperactivity, autophagy and other metabolic processes, including mitochondrial functions, could be targeted in breast cancer progression. We investigated the growth inhibitory mechanism of rapamycin + doxycycline treatment in human breast cancer model systems. Cell cycle and cell viability, including apoptotic and necrotic cell death, were analysed using flow cytometry, caspase activity measurements and caspase-3 immunostainings. mTOR-, autophagy-, necroptosis-related proteins and treatment-induced morphological alterations were analysed by WesTM, Western blot, immunostainings and transmission electron microscopy. The rapamycin + doxycycline combination decreased tumour proliferation in about 2/3rd of the investigated cell lines. The continuous treatment reduced tumour growth significantly both in vivo and in vitro. The effect after short-term treatment was reversible; however, autophagic vacuoles and degrading mitochondria were detected simultaneously, and the presence of mitophagy was also observed after the long-term rapamycin + doxycycline combination treatment. The rapamycin + doxycycline combination did not cause apoptosis or necrosis/necroptosis, but the alterations in autophagy- and mitochondria-related protein levels (LC3-B-II/I, p62, MitoTracker, TOM20 and certain co-stainings) were correlated to autophagy induction and mitophagy, without mitochondria repopulation. Based on these results, we suggest considering inducing metabolic stress and targeting mTOR hyperactivity and mitochondrial functions in combined anti-cancer treatments.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Autophagy/drug effects , Breast Neoplasms/drug therapy , Cell Proliferation/drug effects , Mitochondria/metabolism , Neoplasm Proteins/metabolism , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Doxycycline/pharmacology , Female , HT29 Cells , Humans , MCF-7 Cells , Mitochondria/pathology , Sirolimus/pharmacology
11.
Hematol Oncol ; 39(4): 513-520, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34013974

ABSTRACT

In the pathogenesis of chronic lymphocytic leukemia (CLL) the microenvironment plays an important role, as it produces survival signals and mediates drug resistance. Lenalidomide, which has immunomodulatory effect, can enhance the activation of T-, NK-cells and endothelial cells, however there are no data available whether it can modulate bone marrow stromal cells (BMSCs). In our study, we investigated the effects of lenalidomide on BMSCs and CLL cells. CLL cells were cultured alone or with BMSCs and were treated with lenalidomide. Apoptosis, immunophenotype, and cytokine secretion of BMSCs and CLL cells were determined by flow cytometry. Lenalidomide slightly increased the apoptosis of CLL cells and abrogated the anti-apoptotic effect of BMSCs on CLL cells. Lenalidomide treatment decreased the expression of antigens on CLL cells, which mediate the interactions with the microenvironment. Interestingly, lenalidomide enhanced the expression of IRF4 and the co-stimulatory molecule CD86. The secretion of several cytokines was not changed significantly by lenalidomide. CD49d-negative CLL cases were more sensitive to lenalidomide treatment. Our results suggest that lenalidomide has a limited effect on BMSCs, but it renders CLL cells more immunogenic and unresponsive to survival signals provided by BMSCs.


Subject(s)
Angiogenesis Inhibitors/therapeutic use , Bone Marrow/metabolism , Lenalidomide/therapeutic use , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Aged , Aged, 80 and over , Angiogenesis Inhibitors/pharmacology , Female , Humans , Lenalidomide/pharmacology , Male , Middle Aged
12.
Br J Haematol ; 194(2): 355-364, 2021 07.
Article in English | MEDLINE | ID: mdl-34019713

ABSTRACT

The Bruton's tyrosine kinase (BTK) inhibitor ibrutinib has revolutionised the therapeutic landscape of chronic lymphocytic leukaemia (CLL). Acquired mutations emerging at position C481 in the BTK tyrosine kinase domain are the predominant genetic alterations associated with secondary ibrutinib resistance. To assess the correlation between disease progression, and the emergence and temporal dynamics of the most common resistance mutation BTKC481S , sensitive (10-4 ) time-resolved screening was performed in 83 relapsed/refractory CLL patients during single-agent ibrutinib treatment. With a median follow-up time of 40 months, BTKC481S was detected in 48·2% (40/83) of the patients, with 80·0% (32/40) of them showing disease progression during the examined period. In these 32 cases, representing 72·7% (32/44) of all patients experiencing relapse, emergence of the BTKC481S mutation preceded the symptoms of clinical relapse with a median of nine months. Subsequent Bcl-2 inhibition therapy applied in 28/32 patients harbouring BTKC481S and progressing on ibrutinib conferred clinical and molecular remission across the patients. Our study demonstrates the clinical value of sensitive BTKC481S monitoring with the largest longitudinally analysed real-world patient cohort reported to date and validates the feasibility of an early prediction of relapse in the majority of ibrutinib-treated relapsed/refractory CLL patients experiencing disease progression.


Subject(s)
Adenine/analogs & derivatives , Agammaglobulinaemia Tyrosine Kinase/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Piperidines/therapeutic use , Protein Kinase Inhibitors/therapeutic use , Adenine/therapeutic use , Adult , Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Aged , Aged, 80 and over , Disease Progression , Female , High-Throughput Nucleotide Sequencing , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Male , Middle Aged , Neoplasm Recurrence, Local/diagnosis , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/genetics , Point Mutation/drug effects
13.
Acta Oncol ; 60(4): 528-530, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33491510

ABSTRACT

BACKGROUND: The Bcl-2 inhibitor venetoclax has been recently introduced into the treatment of chronic lymphocytic leukemia. Venetoclax is a highly effective drug, however acquired resistance may make long-term treatment challenging. In our study, we present potential novel resistance mechanisms and prognostic markers that are potentially able to predict the early appearance of the resistance. MATERIAL AND METHODS: Repeated complete blood counts, flow cytometric measurements, and physical examinations were performed during the patient follow-up. Clinical and laboratory parameters showed that the patient developed clinical resistance to venetoclax on day 450 of therapy. Resistance mutation analysis (D103Y) and apoptosis arrays from samples at the time of resistance were done. RESULTS: We were able to identify the resistance mutations just a very low variant allele frequency level from the resistant samples. Furthermore we detected increased Bcl-2 expression in peripheral blood (PB), and XIAP overexpression in bone marrow (BM) that could lead to venetoclax resistance. We examined the immunophenotype of CLL cells and recognized that while the expression of CD86 did not change until day 270 of the treatment, since then its expression steadily increased. Moreover, we compared the expression of CD86 in the resistant PB and BM samples and did not find a notable difference between the compartments. CONCLUSION: Our results imply that CLL cells may try to avoid the apoptotic effect of venetoclax through increased CD86 expression by activating antiapoptotic mechanisms. Confirmatory experiments are still required to unequivocally prove that CD86 is a prognostic marker, however, its predictive property during the venetoclax treatment is promising.


Subject(s)
Antineoplastic Agents , Leukemia, Lymphocytic, Chronic, B-Cell , Antineoplastic Agents/therapeutic use , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Drug Resistance, Neoplasm/genetics , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Sulfonamides/therapeutic use
14.
Case Rep Med ; 2020: 4318638, 2020.
Article in English | MEDLINE | ID: mdl-33178284

ABSTRACT

BACKGROUND: Merkel cell carcinoma (MCC) is a rare primary neuroendocrine cutaneous tumor, rarely metastasizing to the brain. Chronic lymphoid leukemia (CLL) is a disease predisposing to MCC. According to previous reports, headache and focal neurological deficits suggest disease progression to the brain. We present a patient with MCC whose seizure was not elicited by a cerebral metastasis, but by bone metastases compressing the brain. Case Presentation. A 62-year-old female patient had a history of CLL. A lesion with the appearance of an atheroma was removed from the right upper arm. Histology confirmed the diagnosis of MCC. She was admitted to the neurology department with her first GM seizure. The cranial MRI/MRA showed bone metastases in the right parietal and both frontal areas, compressing the brain. Flow cytometry of CSF did not reveal metastasis of MCC. CONCLUSIONS: The case history of the patient was unique even among the rare cases of MCC with neurological involvement. The seizure was not elicited by a cerebral metastasis, but by bone metastases compressing the brain. In addition to patient history, clinical presentation and radiological findings enabled a suspected diagnosis of skull metastasis of MCC compressing the brain, causing symptomatic epileptic seizures.

15.
Cells ; 9(8)2020 08 09.
Article in English | MEDLINE | ID: mdl-32784836

ABSTRACT

Global DNA hypomethylation is a characteristic feature of colorectal carcinoma (CRC). The tumor inhibitory effect of S-adenosylmethionine (SAM) methyl donor has been described in certain cancers including CRC. However, the molecular impact of SAM treatment on CRC cell lines with distinct genetic features has not been evaluated comprehensively. HT-29 and SW480 cells were treated with 0.5 and 1 mmol/L SAM for 48 h followed by cell proliferation measurements, whole-genome transcriptome and methylome analyses, DNA stability assessments and exome sequencing. SAM reduced cell number and increased senescence by causing S phase arrest, besides, multiple EMT-related genes (e.g., TGFB1) were downregulated in both cell lines. Alteration in the global DNA methylation level was not observed, but certain methylation changes in gene promoters were detected. SAM-induced γ-H2AX elevation could be associated with activated DNA repair pathway showing upregulated gene expression (e.g., HUS1). Remarkable genomic stability elevation, namely, decreased micronucleus number and comet tail length was observed only in SW480 after treatment. SAM has the potential to induce senescence, DNA repair, genome stability and to reduce CRC progression. However, the different therapeutic responses of HT-29 and SW480 to SAM emphasize the importance of the molecular characterization of CRC cases prior to methyl donor supplementation.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinoma/drug therapy , Colorectal Neoplasms/drug therapy , DNA Methylation/drug effects , DNA Repair/drug effects , S-Adenosylmethionine/pharmacology , Antineoplastic Agents/administration & dosage , Gene Expression Regulation, Neoplastic/drug effects , HT29 Cells , Humans , S-Adenosylmethionine/administration & dosage
16.
Cancers (Basel) ; 12(8)2020 Aug 13.
Article in English | MEDLINE | ID: mdl-32823516

ABSTRACT

BACKGROUND: Based on previous retrospective results, we investigated the association of coagulation FXIII subunit A (FXIII-A) expression pattern on survival and correlations with known prognostic factors of B-cell progenitor (BCP) childhood acute lymphoblastic leukemia (ALL) as a pilot study of the prospective multi-center BFM ALL-IC 2009 clinical trial. METHODS: The study included four national centers (n = 408). Immunophenotyping by flow cytometry and cytogenetic analysis were performed by standard methods. Copy number alteration was studied in a subset of patients (n = 59). Survival rates were estimated by Kaplan-Meier analysis. Correlations between FXIII-A expression patterns and risk factors were investigated with Cox and logistic regression models. RESULTS: Three different patterns of FXIII-A expression were observed: negative (<20%), dim (20-79%), and bright (≥80%). The FXIII-A dim expression group had significantly higher 5-year event-free survival (EFS) (93%) than the FXIII-A negative (70%) and FXIII-A bright (61%) groups. Distribution of intermediate genetic risk categories and the "B-other" genetic subgroup differed significantly between the FXIII-A positive and negative groups. Multivariate logistic regression confirmed independent association between the FXIII-A negative expression characteristics and the prevalence of intermediate genetic risk group. CONCLUSIONS: FXIII-A negativity is associated with dismal survival in children with BCP-ALL and is an indicator for the presence of unfavorable genetic alterations.

17.
Pathol Oncol Res ; 26(4): 2209-2223, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32307642

ABSTRACT

Up-regulation of the long non-coding RNA LINC00152 can contribute to cancer development, proliferation and invasion, including colorectal cancer, however, its mechanism of action in colorectal carcinogenesis and progression is only insufficiently understood. In this work we correlated LINC00152 expression with promoter DNA methylation changes in colorectal tissues along the normal-adenoma-carcinoma sequence and studied the effects of LINC00152 silencing on the cell cycle regulation and on the whole transcriptome in colon carcinoma cells using cell and molecular biology techniques. LINC00152 was significantly up-regulated in adenoma and colorectal cancer (p < 0.001) compared to normal samples, which was confirmed by real-time PCR and in situ hybridization. LINC00152 promoter hypomethylation detected in colorectal cancer (p < 0.01) was strongly correlated with increased LINC00152 expression (r=-0.90). Silencing of LINC00152 significantly suppressed cell growth, induced apoptosis and decreased cyclin D1 expression (p < 0.05). Whole transcriptome analysis of LINC00152-silenced cells revealed significant down-regulation of oncogenic and metastasis promoting genes (e.g. YES proto-oncogene 1, PORCN porcupine O-acyltransferase), and up-regulation of tumour suppressor genes (e.g. DKK1 dickkopf WNT signalling pathway inhibitor 1, PERP p53 apoptosis effector) (adjusted p < 0.05). Pathway analysis confirmed the LINC00152-related activation of oncogenic molecular pathways including those driven by PI3K/Akt, Ras, WNT, TP53, Notch and ErbB. Our results suggest that promoter hypomethylation related overexpression of LINC00152 can contribute to the pathogenesis of colorectal cancer by facilitating cell progression through the up-regulation of several oncogenic and metastasis promoting pathway elements.


Subject(s)
Biomarkers, Tumor/genetics , Colorectal Neoplasms/pathology , DNA Methylation , Promoter Regions, Genetic , RNA, Long Noncoding/genetics , Aged , Carcinogenesis , Case-Control Studies , Colorectal Neoplasms/genetics , Female , Follow-Up Studies , Gene Expression Regulation, Neoplastic , Humans , Male , Middle Aged , Prognosis , Proto-Oncogene Mas , Transcriptome
18.
Cancers (Basel) ; 12(3)2020 Mar 05.
Article in English | MEDLINE | ID: mdl-32150977

ABSTRACT

Pheochromocytoma/paragangliomas (Pheo/PGL) are rare endocrine cancers with strong genetic background. Mutations in the SDHB subunit of succinate dehydrogenase (SDH) predispose patients to malignant disease with limited therapeutic options and poor prognosis. Using a host of cellular and molecular biology techniques in 2D and 3D cell culture formats we show that SDH inhibition had cell line specific biological and biochemical consequences. Based on our studies performed on PC12 (rat chromaffin cell line), Hela (human cervix epithelial cell line), and H295R (human adrenocortical cell line) cells, we demonstrated that chromaffin cells were not affected negatively by the inhibition of SDH either by siRNA directed against SDHB or treatment with SDH inhibitors (itaconate and atpenin A5). Cell viability and intracellular metabolite measurements pointed to the cell line specific consequences of SDH impairment and to the importance of glutamate metabolism in chromaffin cells. A significant increase in glutaminase-1 (GLS-1) expression after SDH impairment was observed in PC12 cells. GLS-1 inhibitor BPTES was capable of significantly decreasing proliferation of SDH impaired PC12 cells. Glutaminase-1 and SDHB expressions were tested in 35 Pheo/PGL tumor tissues. Expression of GLS1 was higher in the SDHB low expressed group compared to SDHB high expressed tumors. Our data suggest that the SDH-associated malignant potential of Pheo/PGL is strongly dependent on GLS-1 expression and glutaminases may be novel targets for therapy.

19.
Pathol Oncol Res ; 26(2): 1117-1128, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31090020

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is a common comorbidity of non-small cell lung cancer (NSCLC). COPD is characterized by systemic inflammation and lymphocyte dysfunction, mechanisms that are also known to accelerate progression of advanced (IIIB-IV) stage NSCLC. We aimed to find out whether COPD exerts an influence on tumor induced inflammatory and lymphoid responses and progression-free survival (PFS) after first-line treatment in advanced NSCLC. Patients suffering from NSCLC (n = 95), COPD (n = 54), NSCLC+COPD (n = 80) and healthy controls (n = 60) were included. PFS, neutrophil granulocyte and lymphocyte cell counts were recorded. Serum IFNγ, TNFα, VEGF concentrations were measured by using multiplex cytometric bead-based immunoassay. Prevalence of myeloid-derived suppressor cell populations (MDSC-s), and signs of T cell exhaustion were tested by using flow cytometry. Median PFS increased in the NSCLC+COPD group compared to NSCLC patients without COPD (7.4 vs 4.9 months, p < 0.01). NSCLC+COPD patients had 1.7 times (1.2-2.4) more likely to have longer PFS compared to NSCLC patients without COPD (Cox analysis, p < 0.01). Neutrophil cell counts, CRP, IFNγ and TNFα concentrations were all reduced in NSCLC+COPD (all p < 0.05 vs NSCLC). NSCLC+COPD was also associated with reduced serum IL-10 concentration and increased granzyme-B positive CD8 cell counts compared to NSCLC without COPD. The effects of VEGF and MDSC-s on systemic inflammation appeared to be blunted by COPD in patients suffering from advanced NSCLC. Concomitant COPD moderates tumor-induced inflammation and supports some effector lymphoid functions and thereby may be an independent positive predictive factor of longer PFS after first-line therapy in advanced NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung/complications , Lung Neoplasms/complications , Lung Neoplasms/immunology , Pulmonary Disease, Chronic Obstructive/complications , Pulmonary Disease, Chronic Obstructive/immunology , Aged , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/mortality , Female , Humans , Inflammation/immunology , Lung Neoplasms/mortality , Male , Middle Aged , Progression-Free Survival
20.
Front Oncol ; 9: 1063, 2019.
Article in English | MEDLINE | ID: mdl-31709175

ABSTRACT

Background: Leukemic B-cell precursor (BCP) lymphoblasts were identified as a novel expression site for coagulation factor XIII subunit A (FXIII-A). Flow cytometry (FC) revealed three distinct expression patterns, i.e., FXIII-A negative, FXIII-A dim, and FXIII-A bright subgroups. The FXIII-A negative subgroup was significantly associated with the "B-other" genetic category and had an unfavorable disease outcome. Methods: RNA was extracted from bone marrow lymphoblasts of 42 pediatric patients with BCP-acute lymphoblastic leukemia (ALL). FXIII-A expression was determined by multiparameter FC. Genetic diagnosis was based on conventional cytogenetic method and fluorescence in situ hybridization. Affymetrix GeneChip Human Primeview array was used to analyze global expression pattern of 28,869 well-annotated genes. Microarray data were analyzed by Genespring GX14.9.1 software. Gene Ontology analysis was performed using Cytoscape 3.4.0 software with ClueGO application. Selected differentially expressed genes were validated by RT-Q-PCR. Results: We demonstrated, for the first time, the general expression of F13A1 gene in pediatric BCP-ALL samples. The intensity of F13A1 expression corresponded to the FXIII-A protein expression subgroups which defined three characteristic and distinct gene expression signatures detected by Affymetrix oligonucleotide microarrays. Relative gene expression intensity of ANGPTL2, EHMT1 FOXO1, HAP1, NUCKS1, NUP43, PIK3CG, RAPGEF5, SEMA6A, SPIN1, TRH, and WASF2 followed the pattern of change in the intensity of the expression of the F13A1 gene. Common enhancer elements of these genes revealed by in silico analysis suggest that common transcription factors may regulate the expression of these genes in a similar fashion. PLAC8 was downregulated in the FXIII-A bright subgroup. Gene expression signature of the FXIII-A negative subgroup showed an overlap with the signature of "B-other" samples. DFFA, GIGYF1, GIGYF2, and INTS3 were upregulated and CD3G was downregulated in the "B-other" subgroup. Validated genes proved biologically and clinically relevant. We described differential expression of genes not shown previously to be associated with pediatric BCP-ALL. Conclusions: Gene expression signature according to FXIII-A protein expression status defined three novel subgroups of pediatric BCP-ALL. Multiparameter FC appears to be an easy-to-use and affordable method to help in selecting FXIII-A negative patients who require a more elaborate and expensive molecular genetic investigation to design precision treatment.

SELECTION OF CITATIONS
SEARCH DETAIL
...