Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Publication year range
1.
Environ Int ; 163: 107204, 2022 05.
Article in English | MEDLINE | ID: mdl-35366556

ABSTRACT

Desert dust storms pose real threats to air quality and health of millions of people in source regions, with associated impacts extending to downwind areas. Europe (EU) is frequently affected by atmospheric transport of desert dust from the Northern Africa and Middle East drylands. This investigation aims at quantifying the role of desert dust transport events on air quality (AQ) over Italy, which is among the EU countries most impacted by this phenomenon. We focus on the particulate matter (PM) metrics regulated by the EU AQ Directive. In particular, we use multiannual (2006-2012) PM10 records collected in hundreds monitoring sites within the national AQ network to quantify daily and annual contributions of dust during transport episodes. The methodology followed was built on specific European Commission guidelines released to evaluate the natural contributions to the measured PM-levels, and was partially modified, tested and adapted to the Italian case in a previous study. Overall, we show that impact of dust on the yearly average PM10 has a clear latitudinal gradient (from less than 1 to greater than 10 µg/m3 going from north to south Italy), this feature being mainly driven by an increased number of dust episodes per year with decreasing latitude. Conversely, the daily-average dust-PM10 (≅12 µg/m3) is more homogenous over the country and shown to be mainly influenced by the site type, with enhanced values in more urbanized locations. This study also combines the PM10 measurements-approach with geostatistical modelling. In particular, exploiting the dust-PM10 dataset obtained at site- and daily-resolution over Italy, a geostatistical, random-forest model was set up to derive a daily, spatially-continuous field of desert-dust PM10 at high (1-km) resolution. This finely resolved information represent the basis for a follow up investigation of both acute and chronic health effects of desert dust over Italy, stemming from daily and annual exposures, respectively.


Subject(s)
Air Pollutants , Air Pollution , Air Pollutants/analysis , Air Pollution/analysis , Dust/analysis , Environmental Monitoring , Humans , Italy , Particulate Matter/analysis , Physics
2.
Sci Total Environ ; 719: 134984, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-31837859

ABSTRACT

Current shipping activities employ about 3% of the world-delivered energy. Most of this energy is conveyed by diesel engines. In Europe, release of NOx and particulate matter (PM) from shipping is expected to equal the road-transport one by the year 2020. This paper addresses a typical central Mediterranean city-port condition to evaluate the relative contribution of shipping activities to the local air quality. A 3-year long air quality dataset collected at the boundary between the port of Civitavecchia (the major port in central Italy) and the city itself was analyzed to evaluate the long-term, relative contribution of the port and of the city at determining the loads of EU-regulated pollutants (NO2, PM10 and SO2). In addition, black carbon and ultrafine-to-coarse particles data collected along a short-term, intensive campaign were used to assess the port's role at emitting these unregulated pollutants. Cross-analysis of the measurements, allowed to assess which shipping-related activities and port's sectors represent the principal emitters. At the city-port boundary, the annual share of regulated pollutants originating in the port area by shipping and ground movements is of 33% for PM10, 43% for NO2, and 60% for SO2. Analysis of non-regulated pollutants shows the in-port, high polluting potential of some ship categories, in particular those employing low-sulfur but poorly refined oils. These conditions appear to be more often associated with Ro-Ro passenger ships. Piers closest to the Civitavecchia urban settlements are also observed to host the largest emissions. Meteorology and location of the piers with respect to residential areas are confirmed to govern the port's share at impacting the city air quality. Even though air quality thresholds for regulated pollutants are not exceeded in Civitavecchia, constant consideration of an enlarged set of environmental variables should drive actions implemented to mitigate the port's impact onto the nearby city's air quality.

3.
ISPRS J Photogramm Remote Sens ; 145: 250-267, 2018 Nov.
Article in English | MEDLINE | ID: mdl-31105384

ABSTRACT

Space-based observations offer a unique opportunity to investigate the atmosphere and its changes over decadal time scales, particularly in regions lacking in situ and/or ground based observations. In this study, we investigate temporal and spatial variability of atmospheric particulate matter (aerosol) over the urban area of Córdoba (central Argentina) using over ten years (2003-2015) of high-resolution (1 km) satellite-based retrievals of aerosol optical depth (AOD). This fine resolution is achieved exploiting the capabilities of a recently developed inversion algorithm (Multiangle implementation of atmospheric correction, MAIAC) applied to the MODIS sensor datasets of the NASA-Terra and -Aqua platforms. Results of this investigation show a clear seasonality of AOD over the investigated area. This is found to be shaped by an intricate superposition of aerosol sources, acting over different spatial scales and affecting the region with different yearly cycles. During late winter and spring (August-October), local as well as near- and long-range transported biomass burning (BB) aerosols enhance the Córdoba aerosol load, and AOD levels reach their maximum values (> 0.35 at 0.47µm). The fine AOD spatial resolution allowed to disclose that, in this period, AOD maxima are found in the rural/agricultural area around the city, reaching up to the city boundaries pinpointing that fires of local and near-range origin play a major role in the AOD enhancement. A reverse spatial AOD gradient is found from December to March, the urban area showing AODs 40 to 80% higher than in the city surroundings. In fact, during summer, the columnar aerosol load over the Córdoba region is dominated by local (urban and industrial) sources, likely coupled to secondary processes driven by enhanced radiation and mixing effects within a deeper planetary boundary layer (PBL). With the support of modelled AOD data from the Modern-Era Retrospective Analysis for Research and Application (MERRA), we further investigated into the chemical nature of AOD. The results suggest that mineral dust is also an important aerosol component in Córdoba, with maximum impact from November to February. The use of a long-term dataset finally allowed a preliminary assessment of AOD trends over the Córdoba region. For those months in which local sources and secondary processes were found to dominate the AOD (December to March), we found a positive AOD trend in the Córdoba outskirts, mainly in the areas with maximum urbanization/population growth over the investigated decade. Conversely, a negative AOD trend (up to -0.1 per decade) is observed all over the rural area of Córdoba during the BB season, this being attributed to a decrease of fires both at the local and the continental scale.

4.
Epidemiol Prev ; 38(3-4): 244-53, 2014.
Article in Italian | MEDLINE | ID: mdl-25115477

ABSTRACT

OBJECTIVES: to assess air pollution spatial and temporal variability in the urban area nearby the Ciampino International Airport (Rome) and to investigate the airport-related emissions contribute. DESIGN AND SETTING: the study domain was a 64 km2 area around the airport. Two fifteen-day monitoring campaigns (late spring, winter) were carried out. Results were evaluated using several runs outputs of an airport-related sources Lagrangian particle model and a photochemical model (the Flexible Air quality Regional Model, FARM). MAIN OUTCOME MEASURES: both standard and high time resolution air pollutant concentrations measurements: CO, NO, NO2, C6H6, mass and number concentration of several PM fractions. 46 fixed points (spread over the study area) of NO2 and volatile organic compounds concentrations (fifteen days averages); deterministic models outputs. RESULTS: standard time resolution measurements, as well as model outputs, showed the airport contribution to air pollution levels being little compared to the main source in the area (i.e. vehicular traffic). However, using high time resolution measurements, peaks of particles associated with aircraft takeoff (total number concentration and soot mass concentration), and landing (coarse mass concentration) were observed, when the site measurement was downwind to the runway. CONCLUSIONS: the frequently observed transient spikes associated with aircraft movements could lead to a not negligible contribute to ultrafine, soot and coarse particles exposure of people living around the airport. Such contribute and its spatial and temporal variability should be investigated when assessing the airports air quality impact.


Subject(s)
Air Pollutants/analysis , Air Pollution/analysis , Airports , Rome , Urban Health
5.
Radiat Prot Dosimetry ; 137(3-4): 275-9, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19843545

ABSTRACT

The LIDAR (laser radar) is an active remote sensing technique, which allows for the altitude-resolved observation of several atmospheric constituents. A typical application is the measurement of the vertically resolved aerosol optical properties. By using aerosol particles as a marker, continuous determination of the mixing layer height (MLH) can also be obtained by LIDAR. Some examples of aerosol extinction coefficient profiles and MLH extracted from a 1-year LIDAR data set collected in Milan (Italy) are discussed and validated against in situ data (from a balloon-borne optical particle counter). Finally a comparison of the observation-based MLH with relevant numerical simulations (mesoscale model MM5) is provided.


Subject(s)
Aerosols/analysis , Air Pollution/analysis , Atmosphere/analysis , Environmental Monitoring/methods , Models, Chemical , Refractometry/methods , Complex Mixtures/analysis , Computer Simulation , Italy , Photometry/methods
6.
Appl Opt ; 43(29): 5531-41, 2004 Oct 10.
Article in English | MEDLINE | ID: mdl-15508611

ABSTRACT

A numerical model is used to investigate the dependence at 351 nm of desert-aerosol extinction and backscatter coefficients on particle imaginary refractive index (mi). Three ranges (-0.005 < or = mi < or = -0.001, -0.01 < or = mi < or = -0.001, and -0.02 < or = mi < or = -0.001) are considered, showing that backscatter coefficients are reduced as /mi/ increases, whereas extinction coefficients are weakly dependent on mi. Numerical results are compared with extinction and backscatter coefficients retrieved by elastic Raman lidar measurements performed during Saharan dust storms over the Mediterranean Sea. The comparison indicates that a range of -0.01 to -0.001 can be representative of Saharan dust aerosols and that the nonsphericity of mineral particles must be considered.

SELECTION OF CITATIONS
SEARCH DETAIL
...