Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 9(1): 3566, 2019 03 05.
Article in English | MEDLINE | ID: mdl-30837588

ABSTRACT

Despite the exquisite potential of siRNA as a therapeutic, the mechanism(s) responsible for the robust indirect exposure-response relationships have not been fully elucidated. To understand the siRNA properties linked to potent activity, requires the disposition of siRNA to be characterized. A technical challenge in the characterization is the detection and quantitation of siRNA from biological samples. Described herein, a Locked Nucleic Acid (LNA) Hybridization-Ligation ECL ELISA was designed for ultra-sensitive quantification of both sense and antisense strands of siRNA independent of structural modifica-tions. This assay was applied to measure siRNA in serum and tissue homogenate in preclinical species. We observed rapid clearance of siRNA from the systemic circulation which contrasted the prolonged accumulation within the tissue. The assay was also able to distinguish and quantify free siRNA from RNA-induced silencing complex (RISC) and Argonaute 2 (Ago2) associated with therapeutic siRNA. We utilized an orthogonal method, LC-MS, to investigate 3' exonuclease activity toward the antisense strand metabolism. Taken together, we have demonstrated that the LNA Hybridization-Ligation ECL ELISA is arobust analytical method with direct application to measuring the exposure of siRNA therapeutics seamlessly across biological matrices.


Subject(s)
Enzyme-Linked Immunosorbent Assay/methods , Oligonucleotides/genetics , RNA, Small Interfering/analysis , Animals , Intracellular Space/metabolism , Nucleic Acid Hybridization , Oligonucleotides, Antisense/genetics , RNA, Small Interfering/genetics
2.
Bioanalysis ; 7(19): 2501-13, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26466806

ABSTRACT

The analysis of endogenous and exogenous analytes in biological matrices presents several challenges to the bioanalyst. These analytes are often present at low concentrations, typically in complex matrices, and may have physicochemical properties that are not amenable to LC-MS analysis. The bioanalyst thus relies heavily on the formation of analyte derivatives for the efficient quantification of these compounds. These derivatives are also critically employed to derive information on the biology of living systems, potential drug or disease targets, and biomarkers of drug efficacy, safety, or disease progression. In this perspective, we demonstrate how analyte derivatives are applied in modern bioanalytical workflows and we discuss the potential use of these derivatives in the future.


Subject(s)
Biomarkers/analysis , Pharmaceutical Preparations/analysis , Tandem Mass Spectrometry , Animals , Chromatography, High Pressure Liquid , Electrophoresis, Capillary , Humans , Isotope Labeling , Pharmaceutical Preparations/chemistry
3.
Clin Chim Acta ; 425: 64-76, 2013 Oct 21.
Article in English | MEDLINE | ID: mdl-23891854

ABSTRACT

Glycation involves the non-enzymatic addition of reducing sugars and/or their reactive degradation products to amine groups on proteins. This process is promoted by the presence of elevated blood glucose concentrations in diabetes and occurs with various proteins that include human serum albumin (HSA). This review examines work that has been conducted in the study and analysis of glycated HSA. The general structure and properties of HSA are discussed, along with the reactions that can lead to modification of this protein during glycation. The use of glycated HSA as a short-to-intermediate term marker for glycemic control in diabetes is examined, and approaches that have been utilized for measuring glycated HSA are summarized. Structural studies of glycated HSA are reviewed, as acquired for both in vivo and in vitro glycated HSA, along with data that have been obtained on the rate and thermodynamics of HSA glycation. In addition, this review considers various studies that have investigated the effects of glycation on the binding of HSA with drugs, fatty acids and other solutes and the potential clinical significance of these effects.


Subject(s)
Blood Glucose/metabolism , Diabetes Mellitus/enzymology , Glycation End Products, Advanced/metabolism , Serum Albumin/metabolism , Biomarkers/blood , Biomarkers/chemistry , Diabetes Mellitus/pathology , Fatty Acids/blood , Fatty Acids/chemistry , Glyburide/blood , Glyburide/chemistry , Glycation End Products, Advanced/chemistry , Glycosylation , Humans , Hypoglycemic Agents/blood , Hypoglycemic Agents/chemistry , Kinetics , Models, Molecular , Protein Binding , Serum Albumin/chemistry , Sulfonylurea Compounds/blood , Sulfonylurea Compounds/chemistry , Thermodynamics , Glycated Serum Albumin
4.
Anal Chem ; 85(9): 4453-60, 2013 May 07.
Article in English | MEDLINE | ID: mdl-23544441

ABSTRACT

This report used high-performance affinity microcolumns to examine the changes in binding by sulfonylurea drugs to in vivo glycated HSA that had been isolated from individual patients with diabetes. An immunoextraction approach was developed to isolate HSA and glycated HSA from clinical samples, using only 20 µL of plasma or serum and 6-12 nmol of protein to prepare each affinity microcolumn. It was found that the affinity microcolumns could be used in either frontal analysis or zonal elution studies, which typically required only 4-8 min per run. The microcolumns had good stability and allowed data to be obtained for multiple drugs and experimental conditions over hundreds of sample application cycles. Both the overall binding, as measured by frontal analysis, and site-specific interactions, as examined by zonal elution, showed good agreement with previous data that had been obtained for in vitro glycated HSA with similar levels of modification. It was also possible to directly compare the changes in site-specific binding that occurred between sulfonylurea drugs or as the level of HSA glycation was varied. This method is not limited to clinical samples of glycated HSA but could be adapted for work with other modified proteins of interest in personalized medicine.


Subject(s)
Serum Albumin/chemistry , Sulfonylurea Compounds/chemistry , Chromatography, High Pressure Liquid , Humans , Precision Medicine , Serum Albumin/isolation & purification , Spectrophotometry, Ultraviolet
5.
Anal Biochem ; 417(2): 202-10, 2011 Oct 15.
Article in English | MEDLINE | ID: mdl-21741949

ABSTRACT

Cholesteryl ester (CE) and diacylglycerol (DAG) molecular species are important lipid storage and signaling molecules. Mass spectrometric analyses of these lipids are complicated by the presence of isobaric molecular ions shared by these lipid classes and by relatively poor electrospray ionization, which is a consequence of an inherently weak dipole moment in these lipid classes. The current study demonstrates that lithiated adducts of CE and DAG molecular ions have enhanced ionization and lipid class-specific fragmentation in tandem mass spectrometry (MS/MS) scan modes, thereby allowing the implementation of strategies capable of lipid class-specific detection. Using neutral loss (NL) mode for the loss of cholestane from cholesterol esters (NL 368.5) and specific selected reaction monitoring for DAG molecular species, the response of specific molecular species to that of internal standards was determined. CE and DAG molecular species were quantified in human coronary artery endothelial cells (HCAECs) incubated with both palmitic acid and oleic acid. Furthermore, NL 368.5 spectra revealed the oxidation of the aliphatic fatty acid residues of CE molecular species. Taken together, these studies demonstrate a new analytical approach to assessing CE and DAG molecular species that exploits the utility of lithiated adducts in conjunction with MS/MS approaches.


Subject(s)
Cholesterol Esters/analysis , Diglycerides/analysis , Lithium/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Coronary Vessels/cytology , Endothelial Cells/cytology , Humans , Oleic Acid/chemistry , Palmitic Acid/chemistry , Triglycerides/analysis
6.
Clin Chim Acta ; 412(17-18): 1606-15, 2011 Aug 17.
Article in English | MEDLINE | ID: mdl-21601565

ABSTRACT

BACKGROUND: The glycation of human serum albumin (HSA) during diabetes can affect the ability of this protein to bind drugs and small solutes in blood. This study describes the use of (16)O/(18)O-labeling and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry to compare the levels of modification that occur throughout HSA under various glycation conditions in vitro. These quantitative studies build on a recent report that has identified the early and advanced glycation products that are formed on such samples of HSA. METHODS: Glycated HSA samples were prepared by incubating 42 g/l HSA with 0 to 15 mmol/l glucose at pH 7.4 and 37°C for up to 5 weeks. A control HSA sample was digested in (16)O-enriched water and glycated HSA samples were digested in the presence of (18)O-enriched water. These 2 types of samples were then mixed and the amounts of (16)O- vs. (18)O-labeled peptides were measured to determine the levels of modification that were occurring throughout HSA. RESULTS: The largest levels of modification occurred in residues 101-119, 1-10 or 42-51, 87-100, 360-372, 521-531, and 275-286 of HSA after 2 weeks of glycation, and in residues 21-41, 1-10 or 42-51, 521-531, 82-93, and 146-160 after 5 weeks of glycation. Some of these regions contained the N-terminus, K199, K439, and K525, which have been previously identified as major glycation sites on HSA. The glycation pattern of HSA was dominated by early glycation products (e.g., fructosyl-lysine) after a reaction period of 2 weeks for mildly glycated HSA, while advanced glycation end products became more prominent at longer reaction times. CONCLUSIONS: The time course of the observed modifications indicated that the pattern of glycation products changed as HSA was incubated over longer periods of time with glucose. Several regions found to have significant levels of modification were at or near the major drug binding regions on HSA. These results explain why the interaction of some drugs with HSA has been observed to vary with the level of glycation for this protein.


Subject(s)
Glucose/metabolism , Serum Albumin/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Amino Acid Sequence , Humans , Molecular Sequence Data , Oxygen Isotopes , Serum Albumin/chemistry
7.
Clin Chim Acta ; 412(3-4): 277-85, 2011 Jan 30.
Article in English | MEDLINE | ID: mdl-21034726

ABSTRACT

BACKGROUND: Many of the complications encountered during diabetes can be linked to the non-enzymatic glycation of proteins, including human serum albumin (HSA). However, there is little information regarding how the glycation pattern of HSA changes as the total extent of glycation is varied. The goal of this study was to identify and conduct a semi-quantitative comparison of the glycation products on HSA that are produced in the presence of various levels of glycation. METHODS: Three glycated HSA samples were prepared in vitro by incubating physiological concentrations of HSA with 15 mmol/l glucose for 2 or 5 weeks, or with 30 mmol/l glucose for 4 weeks. These samples were then digested and examined by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to identify the glycation products that were formed. RESULTS: It was found that the glycation pattern of HSA changed with its overall extent of total glycation. Many modifications including previously-reported primary glycation sites (e.g., K199, K281, and the N-terminus) were consistently found in the tested samples. Lysines 199 and 281, as well as arginine 428, contained the most consistently identified and abundant glycation products. Lysines 93, 276, 286, 414, 439, and 524/525, as well as the N-terminus and arginines 98, 197, and 521, were also found to be modified at various degrees of HSA glycation. CONCLUSIONS: The glycation pattern of HSA was found to vary with different levels of total glycation and included modifications at the 2 major drug binding sites on this protein. This result suggests that different modified forms of HSA, both in terms of the total extent of glycation and glycation pattern, may be found at various stages of diabetes. The clinical implication of these results is that the binding of HSA to some drug may be altered at various stages of diabetes as the extent of glycation and types of modifications in this protein are varied.


Subject(s)
Serum Albumin/chemistry , Serum Albumin/metabolism , Amino Acid Sequence , Binding Sites , Diabetes Mellitus/metabolism , Glycosylation , Humans , Models, Molecular , Pharmaceutical Preparations/metabolism , Protein Conformation , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
8.
Clin Chim Acta ; 411(15-16): 1102-10, 2010 Aug 05.
Article in English | MEDLINE | ID: mdl-20394739

ABSTRACT

BACKGROUND: One of the long term complications of diabetes is the non-enzymatic addition of glucose to proteins in blood, such as human serum albumin (HSA), which leads to the formation of an Amadori product and advanced glycation end products (AGEs). This study uses (16)O/(18)O-labeling and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to provide quantitative data on the extent of modification that occurs in the presence of glucose at various regions in the structure of minimally glycated HSA. METHODS: Normal HSA, with no significant levels of glycation, was digested by various proteolytic enzymes in the presence of water, while a similar sample containing in vitro glycated HSA was digested in (18)O-enriched water. These samples were then mixed and the (16)O/(18)O ratios were measured for peptides in each digest. The values obtained for the (16)O/(18)O ratios of the detected peptides for the mixed sample were used to determine the degree of modification that occurred in various regions of glycated HSA. RESULTS: Peptides containing arginines 114, 81, or 218 and lysines 413, 432, 159, 212, or 323 were found to have (16)O/(18)O ratios greater than a cut off value of 2.0 (i.e., a cut off value based on results noted when using only normal HSA as a reference). A qualitative comparison of the (16)O- and (18)O-labeled digests indicated that lysines 525 and 439 also had significant degrees of modification. The modifications that occurred at these sites were variations of fructosyl-lysine and AGEs which included 1-alkyl-2-formyl-3,4-glycoyl-pyrole and pyrraline. CONCLUSIONS: Peptides containing arginine 218 and lysines 212, 413, 432, and 439 contained high levels of modification and are also present near the major drug binding sites on HSA. This result is clinically relevant because it suggests the glycation of HSA may alter its ability to bind various drugs and small solutes in blood.


Subject(s)
Serum Albumin/chemistry , Serum Albumin/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Amino Acid Sequence , Binding Sites , Glycation End Products, Advanced/metabolism , Glycosylation , Humans , Isotope Labeling , Oxygen Isotopes , Peptide Fragments/metabolism , Pharmaceutical Preparations/metabolism , Trypsin/metabolism
9.
Clin Chim Acta ; 398(1-2): 63-9, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18773884

ABSTRACT

BACKGROUND: A system was developed for the simultaneous measurement in urine of free catecholamines (i.e., dopamine, norepinephrine, epinephrine) and creatinine (i.e., an indicator of urine output and volume). This method was based on the use of tandem affinity/ion-pair HPLC and flow injection analysis. METHODS: The free catecholamines were extracted directly from urine by using an on-line phenylboronic acid affinity column. The extracted solutes were then separated and measured by ion-pair chromatography followed by amperometric detection. Creatinine was measured by an on-line flow injection analysis system based on the Jaffe reaction, which analyzed creatinine as it eluted non-retained from the phenylboronic acid column. RESULTS: Various factors were considered in the design and optimization of the phenylboronic acid column, the tandem affinity/ion-pair HPLC columns and the flow injection analysis system. The total analysis time for the final combined system was approximately 16 min per injection at 1 ml/min. This method was found to have good agreement with the expected results for control urine samples. The limits of detection for 20 microl samples (S/N=3.0) were 1.8, 1.0 and 4.3 microg/l for norepinephrine, epinephrine and dopamine, respectively, while the limit of detection of creatinine was 5.0 mg/l. The linear response of this method extended over a 450 to 930-fold range in concentration for the catecholamines and covered the range of clinical interest. The within-day precision of this method was +/-2.0-2.7%. CONCLUSIONS: The ability of this method to simultaneously monitor both creatinine and other analytes makes this HPLC/FIA system an attractive method for use in monitoring urinary compounds. With this approach it was possible to provide fast results for small volumes of random urine samples that were collected as part of a psychological study. The same method could also be utilized with 12 or 24 h urine specimens.


Subject(s)
Catecholamines/urine , Boronic Acids/urine , Chromatography, Affinity , Chromatography, High Pressure Liquid , Creatinine/urine , Electrochemistry , Flow Injection Analysis , Humans , Hydrogen-Ion Concentration , Linear Models , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL
...