Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Sci Rep ; 12(1): 7395, 2022 05 05.
Article in English | MEDLINE | ID: mdl-35513399

ABSTRACT

The indoor environment is the primary location for the transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), largely driven by respiratory particle accumulation in the air and increased connectivity between the individuals occupying indoor spaces. In this study, we aimed to track a cohort of subjects as they occupied a COVID-19 isolation dormitory to better understand the impact of subject and environmental viral load over time, symptoms, and room ventilation on the detectable viral load within a single room. We find that subject samples demonstrate a decrease in overall viral load over time, symptoms significantly impact environmental viral load, and we provide the first real-world evidence for decreased aerosol SARS-CoV-2 load with increasing ventilation, both from mechanical and window sources. These results may guide environmental viral surveillance strategies and be used to better control the spread of SARS-CoV-2 within built environments and better protect those caring for individuals with COVID-19.


Subject(s)
COVID-19 , Aerosols , Built Environment , Humans , SARS-CoV-2 , Ventilation
2.
Clin Infect Dis ; 75(1): e174-e184, 2022 08 24.
Article in English | MEDLINE | ID: mdl-34996097

ABSTRACT

BACKGROUND: Several studies indicate that coronavirus disease 2019 (COVID-19) is primarily transmitted within indoor spaces. Therefore, environmental characterization of severe acute respiratory syndrome coronavirus 2 viral load with respect to human activity, building parameters, and environmental mitigation strategies is critical to combat disease transmission. METHODS: We recruited 11 participants diagnosed with COVID-19 to individually occupy a controlled chamber and conduct specified physical activities under a range of environmental conditions; we collected human and environmental samples over a period of 3 days for each participant. RESULTS: Here we show that increased viral load, measured by lower RNA cycle threshold (CT) values, in nasal samples is associated with higher viral loads in environmental aerosols and on surfaces captured in both the near field (1.2 m) and far field (3.5 m). We also found that aerosol viral load in far field is correlated with the number of particles within the range of 1-2.5 µm. Furthermore, we found that increased ventilation and filtration significantly reduced aerosol and surface viral loads, while higher relative humidity resulted in lower aerosol and higher surface viral load, consistent with an increased rate of particle deposition at higher relative humidity. Data from near field aerosol trials with high expiratory activities suggest that respiratory particles of smaller sizes (0.3-1 µm) best characterize the variance of near field aerosol viral load. CONCLUSIONS: Our findings indicate that building operation practices such as ventilation, filtration, and humidification substantially reduce the environmental aerosol viral load and therefore inhalation dose, and should be prioritized to improve building health and safety.


Subject(s)
COVID-19 , Humans , Respiratory Aerosols and Droplets , SARS-CoV-2 , Serologic Tests , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL
...