Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ecol ; 32(19): 5305-5322, 2023 10.
Article in English | MEDLINE | ID: mdl-37602497

ABSTRACT

A role of ecological adaptation in speciation can be obscured by stochastic processes and differences that species accumulate after genetic isolation. One way to identify adaptive characters and their underlying genes is to study cases of speciation involving parallel adaptations. Recently resolved phylogenies reveal that alpine morphology has evolved in parallel in the genus Antirrhinum (snapdragons): first in an early split of an alpine from a lowland lineage and, more recently, from within the lowland lineage to produce closely related sympatric species with contrasting alpine and lowland forms. Here, we find that two of these later diverged sympatric species are differentiated by only around 2% of nuclear loci. Though showing evidence of recent gene flow, the species remain distinct for a suite of morphological characters typical of earlier-diverged alpine or lowland lineages and their morphologies correlate with features of the local landscape, as expected of ecological adaptations. Morphological differences between the two species involve multiple, unlinked genes so that parental character combinations are readily broken up by recombination in hybrids. We detect little evidence for post-pollination barriers to gene flow or recombination, suggesting that genetic isolation related to ecological adaptation is important in maintaining character combinations and might have contributed to parallel speciation. We also find evidence that genes involved in the earlier alpine-lowland split were reused in parallel evolution of alpine species, consistent with introgressive hybridisation, and speculate that many non-ecological barriers to gene flow might have been purged during the process.


Subject(s)
Antirrhinum , Haplotypes/genetics , Phylogeny , Reproductive Isolation , Genetic Speciation , Gene Flow
2.
Curr Biol ; 30(8): 1357-1366.e4, 2020 04 20.
Article in English | MEDLINE | ID: mdl-32109395

ABSTRACT

Most angiosperms produce trichomes-epidermal hairs that have protective or more specialized roles. Trichomes are multicellular in almost all species and, in the majority, secretory. Despite the importance of multicellular trichomes for plant protection and as a source of high-value products, the mechanisms that control their development are only poorly understood. Here, we investigate the control of multicellular trichome patterns using natural variation within the genus Antirrhinum (snapdragons), which has evolved hairy alpine-adapted species or lowland species with a restricted trichome pattern multiple times in parallel. We find that a single gene, Hairy (H), which is needed to repress trichome fate, underlies variation in trichome patterns between all Antirrhinum species except one. We show that H encodes a novel epidermis-specific glutaredoxin and that the pattern of trichome distribution within individuals reflects the location of H expression. Phylogenetic and functional tests suggest that H gained its trichome-repressing role late in the history of eudicots and that the ancestral Antirrhinum had an active H gene and restricted trichome distribution. Loss of H function was involved in an early divergence of alpine and lowland Antirrhinum lineages, and the alleles underlying this split were later reused in parallel evolution of alpines from lowland ancestors, and vice versa. We also find evidence for an evolutionary reversal from a widespread to restricted trichome distribution involving a suppressor mutation and for a pleiotropic effect of H on plant growth that might constrain the evolution of trichome pattern.


Subject(s)
Antirrhinum/genetics , Biological Evolution , Glutaredoxins/genetics , Plant Proteins/genetics , Trichomes/growth & development , Antirrhinum/growth & development , Glutaredoxins/antagonists & inhibitors , Mutation , Plant Proteins/antagonists & inhibitors , Trichomes/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...