Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 379(6636): eadd9330, 2023 03 10.
Article in English | MEDLINE | ID: mdl-36893230

ABSTRACT

Brains contain networks of interconnected neurons and so knowing the network architecture is essential for understanding brain function. We therefore mapped the synaptic-resolution connectome of an entire insect brain (Drosophila larva) with rich behavior, including learning, value computation, and action selection, comprising 3016 neurons and 548,000 synapses. We characterized neuron types, hubs, feedforward and feedback pathways, as well as cross-hemisphere and brain-nerve cord interactions. We found pervasive multisensory and interhemispheric integration, highly recurrent architecture, abundant feedback from descending neurons, and multiple novel circuit motifs. The brain's most recurrent circuits comprised the input and output neurons of the learning center. Some structural features, including multilayer shortcuts and nested recurrent loops, resembled state-of-the-art deep learning architectures. The identified brain architecture provides a basis for future experimental and theoretical studies of neural circuits.


Subject(s)
Brain , Connectome , Drosophila melanogaster , Nerve Net , Animals , Brain/ultrastructure , Neurons/ultrastructure , Synapses/ultrastructure , Drosophila melanogaster/ultrastructure , Nerve Net/ultrastructure
2.
PLoS One ; 17(4): e0266064, 2022.
Article in English | MEDLINE | ID: mdl-35377898

ABSTRACT

The pattern of synaptic connections among neurons defines the circuit structure, which constrains the computations that a circuit can perform. The strength of synaptic connections is costly to measure yet important for accurate circuit modeling. Synaptic surface area has been shown to correlate with synaptic strength, yet in the emerging field of connectomics, most studies rely instead on the counts of synaptic contacts between two neurons. Here we quantified the relationship between synaptic count and synaptic area as measured from volume electron microscopy of the larval Drosophila central nervous system. We found that the total synaptic surface area, summed across all synaptic contacts from one presynaptic neuron to a postsynaptic one, can be accurately predicted solely from the number of synaptic contacts, for a variety of neurotransmitters. Our findings support the use of synaptic counts for approximating synaptic strength when modeling neural circuits.


Subject(s)
Connectome , Drosophila , Animals , Drosophila/physiology , Larva , Neurons , Neurotransmitter Agents , Synapses/physiology
3.
Brain Commun ; 2(1): fcaa051, 2020.
Article in English | MEDLINE | ID: mdl-32671340

ABSTRACT

The early and accurate differential diagnosis of parkinsonian disorders is still a significant challenge for clinicians. In recent years, a number of studies have used magnetic resonance imaging data combined with machine learning and statistical classifiers to successfully differentiate between different forms of Parkinsonism. However, several questions and methodological issues remain, to minimize bias and artefact-driven classification. In this study, we compared different approaches for feature selection, as well as different magnetic resonance imaging modalities, with well-matched patient groups and tightly controlling for data quality issues related to patient motion. Our sample was drawn from a cohort of 69 healthy controls, and patients with idiopathic Parkinson's disease (n = 35), progressive supranuclear palsy Richardson's syndrome (n = 52) and corticobasal syndrome (n = 36). Participants underwent standardized T1-weighted and diffusion-weighted magnetic resonance imaging. Strict data quality control and group matching reduced the control and patient numbers to 43, 32, 33 and 26, respectively. We compared two different methods for feature selection and dimensionality reduction: whole-brain principal components analysis, and an anatomical region-of-interest based approach. In both cases, support vector machines were used to construct a statistical model for pairwise classification of healthy controls and patients. The accuracy of each model was estimated using a leave-two-out cross-validation approach, as well as an independent validation using a different set of subjects. Our cross-validation results suggest that using principal components analysis for feature extraction provides higher classification accuracies when compared to a region-of-interest based approach. However, the differences between the two feature extraction methods were significantly reduced when an independent sample was used for validation, suggesting that the principal components analysis approach may be more vulnerable to overfitting with cross-validation. Both T1-weighted and diffusion magnetic resonance imaging data could be used to successfully differentiate between subject groups, with neither modality outperforming the other across all pairwise comparisons in the cross-validation analysis. However, features obtained from diffusion magnetic resonance imaging data resulted in significantly higher classification accuracies when an independent validation cohort was used. Overall, our results support the use of statistical classification approaches for differential diagnosis of parkinsonian disorders. However, classification accuracy can be affected by group size, age, sex and movement artefacts. With appropriate controls and out-of-sample cross validation, diagnostic biomarker evaluation including magnetic resonance imaging based classifiers may be an important adjunct to clinical evaluation.

4.
PLoS Comput Biol ; 12(12): e1005283, 2016 12.
Article in English | MEDLINE | ID: mdl-27984591

ABSTRACT

Connectomics has focused primarily on the mapping of synaptic links in the brain; yet it is well established that extrasynaptic volume transmission, especially via monoamines and neuropeptides, is also critical to brain function and occurs primarily outside the synaptic connectome. We have mapped the putative monoamine connections, as well as a subset of neuropeptide connections, in C. elegans based on new and published gene expression data. The monoamine and neuropeptide networks exhibit distinct topological properties, with the monoamine network displaying a highly disassortative star-like structure with a rich-club of interconnected broadcasting hubs, and the neuropeptide network showing a more recurrent, highly clustered topology. Despite the low degree of overlap between the extrasynaptic (or wireless) and synaptic (or wired) connectomes, we find highly significant multilink motifs of interaction, pinpointing locations in the network where aminergic and neuropeptide signalling modulate synaptic activity. Thus, the C. elegans connectome can be mapped as a multiplex network with synaptic, gap junction, and neuromodulator layers representing alternative modes of interaction between neurons. This provides a new topological plan for understanding how aminergic and peptidergic modulation of behaviour is achieved by specific motifs and loci of integration between hard-wired synaptic or junctional circuits and extrasynaptic signals wirelessly broadcast from a small number of modulatory neurons.


Subject(s)
Caenorhabditis elegans/physiology , Connectome , Animals , Biogenic Monoamines , Computational Biology , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...