Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Front Immunol ; 13: 1050718, 2022.
Article in English | MEDLINE | ID: mdl-36505400

ABSTRACT

Natural killer (NK) cells have an intrinsic ability to detect and eliminate leukaemic cells. Cellular therapies using cytokine-activated NK cells have emerged as promising treatments for patients with advanced leukaemia. However, not all patients respond to current NK cell therapies, and thus improvements in efficacy are required. Type I interferons (IFN-I) are a family of potent immunomodulatory cytokines with a known ability to modulate NK cell responses against cancer. Although the human IFN-I family comprises 16 distinct subtypes, only IFNα2 has been widely explored as an anti-cancer agent. Here, we investigated the individual immunomodulatory effects each IFNα subtype and IFNß had on NK cell functionality to determine whether a particular subtype confers enhanced effector activity against leukaemia. Importantly, IFNα14 and IFNß were identified as superior activators of NK cell effector function in vitro. To test the ability of these subtypes to enhance NK cell activity in vivo, IFN-I stimulation was overlaid onto a standard ex vivo expansion protocol to generate NK cells for adoptive cell therapy. Interestingly, infusion of NK cells pre-activated with IFNα14, but not IFNß, significantly prolonged survival in a preclinical model of leukaemia compared to NK cells expanded without IFN-I. Collectively, these results highlight the diverse immunomodulatory potencies of individual IFN-I subtypes and support further investigation into the use of IFNα14 to favourably modulate NK cells against leukaemia.


Subject(s)
Interferon Type I , Leukemia , Humans , Killer Cells, Natural , Leukemia/therapy , Immunomodulation , Immunotherapy, Adoptive , Antibodies , Cytokines
2.
Front Immunol ; 12: 765705, 2021.
Article in English | MEDLINE | ID: mdl-34777383

ABSTRACT

Over the past 20 years natural killer (NK) cell-based immunotherapies have emerged as a safe and effective treatment option for patients with relapsed or refractory leukemia. Unlike T cell-based therapies, NK cells harbor an innate capacity to eliminate malignant cells without prior sensitization and can be adoptively transferred between individuals without the need for extensive HLA matching. A wide variety of therapeutic NK cell sources are currently being investigated clinically, including allogeneic donor-derived NK cells, stem cell-derived NK cells and NK cell lines. However, it is becoming increasingly clear that not all NK cells are endowed with the same antitumor potential. Despite advances in techniques to enhance NK cell cytotoxicity and persistence, the initial identification and utilization of highly functional NK cells remains essential to ensure the future success of adoptive NK cell therapies. Indeed, little consideration has been given to the identification and selection of donors who harbor NK cells with potent antitumor activity. In this regard, there is currently no standard donor selection criteria for adoptive NK cell therapy. Here, we review our current understanding of the factors which govern NK cell functional fate, and propose a paradigm shift away from traditional phenotypic characterization of NK cell subsets towards a functional profile based on molecular and metabolic characteristics. We also discuss previous selection models for NK cell-based immunotherapies and highlight important considerations for the selection of optimal NK cell donors for future adoptive cell therapies.


Subject(s)
Immunotherapy , Killer Cells, Natural/immunology , Animals , Humans , Phenotype
3.
Front Immunol ; 12: 735133, 2021.
Article in English | MEDLINE | ID: mdl-34552594

ABSTRACT

Cancer vaccination drives the generation of anti-tumor T cell immunity and can be enhanced by the inclusion of effective immune adjuvants such as type I interferons (IFNs). Whilst type I IFNs have been shown to promote cross-priming of T cells, the role of individual subtypes remains unclear. Here we systematically compared the capacity of distinct type I IFN subtypes to enhance T cell responses to a whole-cell vaccination strategy in a pre-clinical murine model. We show that vaccination in combination with IFNß induces significantly greater expansion of tumor-specific CD8+ T cells than the other type I IFN subtypes tested. Optimal expansion was dependent on the presence of XCR1+ dendritic cells, CD4+ T cells, and CD40/CD40L signaling. Therapeutically, vaccination with IFNß delayed tumor progression when compared to vaccination without IFN. When vaccinated in combination with anti-PD-L1 checkpoint blockade therapy (CPB), the inclusion of IFNß associated with more mice experiencing complete regression and a trend in increased overall survival. This work demonstrates the potent adjuvant activity of IFNß, highlighting its potential to enhance cancer vaccination strategies alone and in combination with CPB.


Subject(s)
Adjuvants, Immunologic/pharmacology , CD8-Positive T-Lymphocytes/drug effects , Cancer Vaccines/pharmacology , Interferon-beta/pharmacology , Lymphocyte Activation/drug effects , Lymphocytes, Tumor-Infiltrating/drug effects , Melanoma, Experimental/therapy , Skin Neoplasms/therapy , Animals , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Female , Immune Checkpoint Inhibitors/pharmacology , Interferon-beta/genetics , Interferon-beta/metabolism , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Melanoma, Experimental/immunology , Melanoma, Experimental/metabolism , Melanoma, Experimental/pathology , Mice, Inbred C57BL , Mice, Transgenic , Skin Neoplasms/immunology , Skin Neoplasms/metabolism , Skin Neoplasms/pathology , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL