Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Rep ; 14(1): 14388, 2024 06 22.
Article in English | MEDLINE | ID: mdl-38909129

ABSTRACT

Individuals experience difficulty falling asleep in a new environment, termed the first night effect (FNE). However, the impact of the FNE on sleep-induced brain plasticity remains unclear. Here, using a within-subject design, we found that the FNE significantly reduces visual plasticity during sleep in young adults. Sleep-onset latency (SOL), an indicator of the FNE, was significantly longer during the first sleep session than the second session, confirming the FNE. We assessed performance gains in visual perceptual learning after sleep and increases in the excitatory-to-inhibitory neurotransmitter (E/I) ratio in early visual areas during sleep using magnetic resonance spectroscopy and polysomnography. These parameters were significantly smaller in sleep with the FNE than in sleep without the FNE; however, these parameters were not correlated with SOL. These results suggest that while the neural mechanisms of the FNE and brain plasticity are independent, sleep disturbances temporarily block the neurochemical process fundamental for brain plasticity.


Subject(s)
Neuronal Plasticity , Sleep , Humans , Male , Sleep/physiology , Female , Young Adult , Adult , Polysomnography , Visual Perception/physiology , Magnetic Resonance Spectroscopy , Learning/physiology , Brain/physiology
2.
bioRxiv ; 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38328250

ABSTRACT

Individuals experience difficulty falling asleep in a new environment, termed the first night effect (FNE). However, the impact of the FNE on sleep-induced brain plasticity remains unclear. Here, using a within-subject design, we found that the FNE significantly reduces visual plasticity during sleep in young adults. Sleep-onset latency (SOL), an indicator of the FNE, was significantly longer during the first sleep session than the second session, confirming the FNE. We assessed performance gains in visual perceptual learning after sleep and increases in the excitatory-to-inhibitory neurotransmitter (E/I) ratio in early visual areas during sleep using magnetic resonance spectroscopy and polysomnography. These parameters were significantly smaller in sleep with the FNE than in sleep without the FNE; however, these parameters were not correlated with SOL. These results suggest that while the neural mechanisms of the FNE and brain plasticity are independent, sleep disturbances temporarily block the neurochemical process fundamental for brain plasticity.

3.
Nat Neurosci ; 23(9): 1150-1156, 2020 09.
Article in English | MEDLINE | ID: mdl-32690968

ABSTRACT

Sleep is beneficial for learning. However, it remains unclear whether learning is facilitated by non-rapid eye movement (NREM) sleep or by REM sleep, whether it results from plasticity increases or stabilization, and whether facilitation results from learning-specific processing. Here, we trained volunteers on a visual task and measured the excitatory and inhibitory (E/I) balance in early visual areas during subsequent sleep as an index of plasticity. The E/I balance increased during NREM sleep irrespective of whether pre-sleep learning occurred, but it was associated with post-sleep performance gains relative to pre-sleep performance. In contrast, the E/I balance decreased during REM sleep but only after pre-sleep training, and the decrease was associated with stabilization of pre-sleep learning. These findings indicate that NREM sleep promotes plasticity, leading to performance gains independent of learning, while REM sleep decreases plasticity to stabilize learning in a learning-specific manner.


Subject(s)
Brain/physiology , Neuronal Plasticity/physiology , Sleep, REM/physiology , Sleep/physiology , Spatial Learning/physiology , Adult , Female , Humans , Male , Photic Stimulation
4.
Proc Natl Acad Sci U S A ; 117(2): 959-968, 2020 01 14.
Article in English | MEDLINE | ID: mdl-31892542

ABSTRACT

A growing body of evidence indicates that visual perceptual learning (VPL) is enhanced by reward provided during training. Another line of studies has shown that sleep following training also plays a role in facilitating VPL, an effect known as the offline performance gain of VPL. However, whether the effects of reward and sleep interact on VPL remains unclear. Here, we show that reward interacts with sleep to facilitate offline performance gains of VPL. First, we demonstrated a significantly larger offline performance gain over a 12-h interval including sleep in a reward group than that in a no-reward group. However, the offline performance gains over the 12-h interval without sleep were not significantly different with or without reward during training, indicating a crucial interaction between reward and sleep in VPL. Next, we tested whether neural activations during posttraining sleep were modulated after reward was provided during training. Reward provided during training enhanced rapid eye movement (REM) sleep time, increased oscillatory activities for reward processing in the prefrontal region during REM sleep, and inhibited neural activation in the untrained region in early visual areas in non-rapid eye movement (NREM) and REM sleep. The offline performance gains were significantly correlated with oscillatory activities of visual processing during NREM sleep and reward processing during REM sleep in the reward group but not in the no-reward group. These results suggest that reward provided during training becomes effective during sleep, with excited reward processing sending inhibitory signals to suppress noise in visual processing, resulting in larger offline performance gains over sleep.


Subject(s)
Learning/physiology , Reward , Sleep/physiology , Spatial Learning/physiology , Visual Perception/physiology , Adult , Female , Humans , Male , Psychomotor Performance/physiology , Sleep Stages/physiology , Sleep, REM/physiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL