Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
Article in English | MEDLINE | ID: mdl-38577897

ABSTRACT

BACKGROUND: Trio exome sequencing can be used to investigate congenital abnormalities identified on pregnancy ultrasound, but its use in an Australian context has not been assessed. AIMS: Assess clinical outcomes and changes in management after expedited genomic testing in the prenatal period to guide the development of a model for widespread implementation. MATERIALS AND METHODS: Forty-three prospective referrals for whole exome sequencing, including 40 trios (parents and pregnancy), two singletons and one duo were assessed in a tertiary hospital setting with access to a state-wide pathology laboratory. Diagnostic yield, turn-around time (TAT), gestational age at reporting, pregnancy outcome, change in management and future pregnancy status were assessed for each family. RESULTS: A clinically significant genomic diagnosis was made in 15/43 pregnancies (35%), with an average TAT of 12 days. Gestational age at time of report ranged from 16 + 5 to 31 + 6 weeks (median 21 + 3 weeks). Molecular diagnoses included neuromuscular and skeletal disorders, RASopathies and a range of other rare Mendelian disorders. The majority of families actively used the results in pregnancy decision making as well as in management of future pregnancies. CONCLUSIONS: Rapid second trimester prenatal genomic testing can be successfully delivered to investigate structural abnormalities in pregnancy, providing crucial guidance for current and future pregnancy management. The time-sensitive nature of this testing requires close laboratory and clinical collaboration to ensure appropriate referral and result communication. We found the establishment of a prenatal coordinator role and dedicated reporting team to be important facilitators. We propose this as a model for genomic testing in other prenatal services.

3.
Nat Med ; 29(7): 1681-1691, 2023 07.
Article in English | MEDLINE | ID: mdl-37291213

ABSTRACT

Critically ill infants and children with rare diseases need equitable access to rapid and accurate diagnosis to direct clinical management. Over 2 years, the Acute Care Genomics program provided whole-genome sequencing to 290 families whose critically ill infants and children were admitted to hospitals throughout Australia with suspected genetic conditions. The average time to result was 2.9 d and diagnostic yield was 47%. We performed additional bioinformatic analyses and transcriptome sequencing in all patients who remained undiagnosed. Long-read sequencing and functional assays, ranging from clinically accredited enzyme analysis to bespoke quantitative proteomics, were deployed in selected cases. This resulted in an additional 19 diagnoses and an overall diagnostic yield of 54%. Diagnostic variants ranged from structural chromosomal abnormalities through to an intronic retrotransposon, disrupting splicing. Critical care management changed in 120 diagnosed patients (77%). This included major impacts, such as informing precision treatments, surgical and transplant decisions and palliation, in 94 patients (60%). Our results provide preliminary evidence of the clinical utility of integrating multi-omic approaches into mainstream diagnostic practice to fully realize the potential of rare disease genomic testing in a timely manner.


Subject(s)
Critical Illness , Rare Diseases , Infant , Child , Humans , Rare Diseases/diagnosis , Rare Diseases/genetics , Rare Diseases/therapy , Multiomics , Whole Genome Sequencing/methods , Exome Sequencing
4.
J Bone Miner Res ; 38(5): 692-706, 2023 05.
Article in English | MEDLINE | ID: mdl-36896612

ABSTRACT

Lethal short-limb skeletal dysplasia Al-Gazali type (OMIM %601356), also called dysplastic cortical hyperostosis, Al-Gazali type, is an ultra-rare disorder previously reported in only three unrelated individuals. The genetic etiology for Al-Gazali skeletal dysplasia has up until now been unknown. Through international collaborative efforts involving seven clinical centers worldwide, a cohort of nine patients with clinical and radiographic features consistent with short-limb skeletal dysplasia Al-Gazali type was collected. The affected individuals presented with moderate intrauterine growth restriction, relative macrocephaly, hypertrichosis, large anterior fontanelle, short neck, short and stiff limbs with small hands and feet, severe brachydactyly, and generalized bone sclerosis with mild platyspondyly. Biallelic disease-causing variants in ADAMTSL2 were detected using massively parallel sequencing (MPS) and Sanger sequencing techniques. Six individuals were compound heterozygous and one individual was homozygous for pathogenic variants in ADAMTSL2. In one of the families, pathogenic variants were detected in parental samples only. Overall, this study sheds light on the genetic cause of Al-Gazali skeletal dysplasia and identifies it as a semi-lethal part of the spectrum of ADAMTSL2-related disorders. Furthermore, we highlight the importance of meticulous analysis of the pseudogene region of ADAMTSL2 where disease-causing variants might be located. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Subject(s)
Bone Diseases, Developmental , Limb Deformities, Congenital , Osteochondrodysplasias , Humans , Bone Diseases, Developmental/genetics , Limb Deformities, Congenital/genetics , Limb Deformities, Congenital/pathology , Osteochondrodysplasias/genetics , Bone and Bones/pathology , Homozygote , ADAMTS Proteins/genetics
5.
Am J Hum Genet ; 110(3): 419-426, 2023 03 02.
Article in English | MEDLINE | ID: mdl-36868206

ABSTRACT

Australian Genomics is a national collaborative partnership of more than 100 organizations piloting a whole-of-system approach to integrating genomics into healthcare, based on federation principles. In the first five years of operation, Australian Genomics has evaluated the outcomes of genomic testing in more than 5,200 individuals across 19 rare disease and cancer flagship studies. Comprehensive analyses of the health economic, policy, ethical, legal, implementation and workforce implications of incorporating genomics in the Australian context have informed evidence-based change in policy and practice, resulting in national government funding and equity of access for a range of genomic tests. Simultaneously, Australian Genomics has built national skills, infrastructure, policy, and data resources to enable effective data sharing to drive discovery research and support improvements in clinical genomic delivery.


Subject(s)
Genomics , Health Policy , Humans , Australia , Rare Diseases , Delivery of Health Care
7.
Nat Med ; 29(1): 180-189, 2023 01.
Article in English | MEDLINE | ID: mdl-36658419

ABSTRACT

Pregnancy loss and perinatal death are devastating events for families. We assessed 'genomic autopsy' as an adjunct to standard autopsy for 200 families who had experienced fetal or newborn death, providing a definitive or candidate genetic diagnosis in 105 families. Our cohort provides evidence of severe atypical in utero presentations of known genetic disorders and identifies novel phenotypes and disease genes. Inheritance of 42% of definitive diagnoses were either autosomal recessive (30.8%), X-linked recessive (3.8%) or autosomal dominant (excluding de novos, 7.7%), with risk of recurrence in future pregnancies. We report that at least ten families (5%) used their diagnosis for preimplantation (5) or prenatal diagnosis (5) of 12 pregnancies. We emphasize the clinical importance of genomic investigations of pregnancy loss and perinatal death, with short turnaround times for diagnostic reporting and followed by systematic research follow-up investigations. This approach has the potential to enable accurate counseling for future pregnancies.


Subject(s)
Abortion, Spontaneous , Perinatal Death , Pregnancy , Humans , Female , Perinatal Death/etiology , Autopsy , Abortion, Spontaneous/genetics , Prenatal Diagnosis , Genomics
8.
Dev Cell ; 57(20): 2381-2396.e13, 2022 10 24.
Article in English | MEDLINE | ID: mdl-36228617

ABSTRACT

Kinesins are canonical molecular motors but can also function as modulators of intracellular signaling. KIF26A, an unconventional kinesin that lacks motor activity, inhibits growth-factor-receptor-bound protein 2 (GRB2)- and focal adhesion kinase (FAK)-dependent signal transduction, but its functions in the brain have not been characterized. We report a patient cohort with biallelic loss-of-function variants in KIF26A, exhibiting a spectrum of congenital brain malformations. In the developing brain, KIF26A is preferentially expressed during early- and mid-gestation in excitatory neurons. Combining mice and human iPSC-derived organoid models, we discovered that loss of KIF26A causes excitatory neuron-specific defects in radial migration, localization, dendritic and axonal growth, and apoptosis, offering a convincing explanation of the disease etiology in patients. Single-cell RNA sequencing in KIF26A knockout organoids revealed transcriptional changes in MAPK, MYC, and E2F pathways. Our findings illustrate the pathogenesis of KIF26A loss-of-function variants and identify the surprising versatility of this non-motor kinesin.


Subject(s)
Kinesins , Neurons , Humans , Animals , Mice , Kinesins/genetics , Neurons/metabolism , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Apoptosis , Brain/metabolism
9.
Mol Vis ; 28: 257-268, 2022.
Article in English | MEDLINE | ID: mdl-36284667

ABSTRACT

Purpose: ADAMTSL4-associated ectopia lentis is a rare autosomal recessive condition that is primarily associated with crystalline lens displacement. However, the prevalence of other ocular and systemic manifestations of this condition is poorly understood. In this study, we summarize the ocular and systemic phenotypic spectrum of this condition. Methods: A cross-sectional case study series of four individuals with biallelic pathogenic or likely pathogenic ADAMTSL4 variants was performed alongside a literature review of individuals with ADAMTSL4-associated ectopia lentis on September 29, 2021. Ocular and systemic findings, complications, and genetic findings of all four individuals were collected and summarized. Results: The phenotypic spectrum across 91 individuals sourced from literature and four individuals from this case study series was highly variable. The main ocular phenotypes included ectopia lentis (95/95, 100%), ectopia lentis et pupillae (18/95, 19%), iris transillumination (13/95, 14%), iridodonesis (12/95, 13%), persistent pupillary membrane (12/95, 13%), and early-onset cataract or lens opacities (12/95, 13%). Anterior segment features other than ectopia lentis appeared to be exclusively associated with biallelic loss of function variants (p<0.001). Pupillary block glaucoma had a prevalence of 1%. Post-lensectomy complications included retinal detachment (6/41, 15%), elevated intraocular pressure (4/41, 10%), and aphakic glaucoma (1/41, 2%). Most individuals were not reported to have had systemic features (69/95, 73%). Conclusions: The clinical phenotype of ADAMTSL4-associated ectopia lentis was summarized and expanded. Clinicians should be aware of the varied ocular phenotype and the risks of retinal detachment, ocular hypertension, and glaucoma in the diagnosis and management of this condition.


Subject(s)
Ectopia Lentis , Glaucoma , Retinal Detachment , Humans , Ectopia Lentis/complications , Ectopia Lentis/genetics , Ectopia Lentis/diagnosis , Pedigree , Cross-Sectional Studies , ADAMTS Proteins/genetics , Phenotype , Glaucoma/complications , Glaucoma/genetics
10.
Genet Med ; 24(11): 2351-2366, 2022 11.
Article in English | MEDLINE | ID: mdl-36083290

ABSTRACT

PURPOSE: Germline loss-of-function variants in CTNNB1 cause neurodevelopmental disorder with spastic diplegia and visual defects (NEDSDV; OMIM 615075) and are the most frequent, recurrent monogenic cause of cerebral palsy (CP). We investigated the range of clinical phenotypes owing to disruptions of CTNNB1 to determine the association between NEDSDV and CP. METHODS: Genetic information from 404 individuals with collectively 392 pathogenic CTNNB1 variants were ascertained for the study. From these, detailed phenotypes for 52 previously unpublished individuals were collected and combined with 68 previously published individuals with comparable clinical information. The functional effects of selected CTNNB1 missense variants were assessed using TOPFlash assay. RESULTS: The phenotypes associated with pathogenic CTNNB1 variants were similar. A diagnosis of CP was not significantly associated with any set of traits that defined a specific phenotypic subgroup, indicating that CP is not additional to NEDSDV. Two CTNNB1 missense variants were dominant negative regulators of WNT signaling, highlighting the utility of the TOPFlash assay to functionally assess variants. CONCLUSION: NEDSDV is a clinically homogeneous disorder irrespective of initial clinical diagnoses, including CP, or entry points for genetic testing.


Subject(s)
Intellectual Disability , Neurodevelopmental Disorders , Humans , Phenotype , Neurodevelopmental Disorders/genetics , Wnt Signaling Pathway/genetics , Intellectual Disability/genetics , Genomics , beta Catenin/genetics
11.
Eur J Hum Genet ; 30(10): 1182-1186, 2022 10.
Article in English | MEDLINE | ID: mdl-35902696

ABSTRACT

Heterozygous single nucleotide variants (SNVs) or copy-number variant deletions involving FOXF1 or its distant lung-specific enhancer on chromosome 16q24.1 have been identified in 80-90% of patients with Alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV), a lethal neonatal lung developmental disorder. We describe a four-generation family with a deceased ACDMPV neonate, her sibling from the electively terminated pregnancy, healthy mother with a history of pulmonary arterial hypertension (PAH), an unaffected aunt, an aunt deceased due to findings consistent with ACDMPV, and a reportedly unaffected grandmother, all with the frameshifting variant c.881_902dup (p.Gly302Profs*46) in FOXF1, and a deceased great-grandmother with a history of PAH. Genome sequencing analyses in the proband's unaffected mother revealed a non-coding putative regulatory SNV rs560517434-A within the lung-specific distant FOXF1 enhancer in trans to the FOXF1 frameshift mutation. Functional testing of this variant using an in vitro luciferase reporter assay showed that it increased FOXF1 promoter activity 10-fold. Our studies further demonstrate that non-coding SNVs in the FOXF1 enhancer region can rescue the lethal ACDMPV phenotype and support the compound inheritance gene dosage model.


Subject(s)
Forkhead Transcription Factors , Persistent Fetal Circulation Syndrome , Female , Forkhead Transcription Factors/genetics , Frameshift Mutation , Humans , Infant, Newborn , Nucleotides , Persistent Fetal Circulation Syndrome/genetics , Pulmonary Alveoli/abnormalities , Sequence Deletion
12.
Genet Med ; 24(8): 1753-1760, 2022 08.
Article in English | MEDLINE | ID: mdl-35579625

ABSTRACT

PURPOSE: Genome-wide sequencing is increasingly being performed during pregnancy to identify the genetic cause of congenital anomalies. The interpretation of prenatally identified variants can be challenging and is hampered by our often limited knowledge of prenatal phenotypes. To better delineate the prenatal phenotype of Coffin-Siris syndrome (CSS), we collected clinical data from patients with a prenatal phenotype and a pathogenic variant in one of the CSS-associated genes. METHODS: Clinical data was collected through an extensive web-based survey. RESULTS: We included 44 patients with a variant in a CSS-associated gene and a prenatal phenotype; 9 of these patients have been reported before. Prenatal anomalies that were frequently observed in our cohort include hydrocephalus, agenesis of the corpus callosum, hypoplastic left heart syndrome, persistent left vena cava, diaphragmatic hernia, renal agenesis, and intrauterine growth restriction. Anal anomalies were frequently identified after birth in patients with ARID1A variants (6/14, 43%). Interestingly, pathogenic ARID1A variants were much more frequently identified in the current prenatal cohort (16/44, 36%) than in postnatal CSS cohorts (5%-9%). CONCLUSION: Our data shed new light on the prenatal phenotype of patients with pathogenic variants in CSS genes.


Subject(s)
Hand Deformities, Congenital , Intellectual Disability , Micrognathism , Abnormalities, Multiple , Chromosomal Proteins, Non-Histone/genetics , Face/abnormalities , Genetic Association Studies , Hand Deformities, Congenital/genetics , Humans , Intellectual Disability/genetics , Intellectual Disability/pathology , Micrognathism/genetics , Neck/abnormalities , Phenotype
13.
J Med Genet ; 59(5): 511-516, 2022 05.
Article in English | MEDLINE | ID: mdl-34183358

ABSTRACT

PURPOSE: Binding proteins (G-proteins) mediate signalling pathways involved in diverse cellular functions and comprise Gα and Gßγ units. Human diseases have been reported for all five Gß proteins. A de novo missense variant in GNB2 was recently reported in one individual with developmental delay/intellectual disability (DD/ID) and dysmorphism. We aim to confirm GNB2 as a neurodevelopmental disease gene, and elucidate the GNB2-associated neurodevelopmental phenotype in a patient cohort. METHODS: We discovered a GNB2 variant in the index case via exome sequencing and sought individuals with GNB2 variants via international data-sharing initiatives. In silico modelling of the variants was assessed, along with multiple lines of evidence in keeping with American College of Medical Genetics and Genomics guidelines for interpretation of sequence variants. RESULTS: We identified 12 unrelated individuals with five de novo missense variants in GNB2, four of which are recurrent: p.(Ala73Thr), p.(Gly77Arg), p.(Lys89Glu) and p.(Lys89Thr). All individuals have DD/ID with variable dysmorphism and extraneurologic features. The variants are located at the universally conserved shared interface with the Gα subunit, which modelling suggests weaken this interaction. CONCLUSION: Missense variants in GNB2 cause a congenital neurodevelopmental disorder with variable syndromic features, broadening the spectrum of multisystem phenotypes associated with variants in genes encoding G-proteins.


Subject(s)
Intellectual Disability , Neurodevelopmental Disorders , GTP-Binding Proteins/genetics , Humans , Intellectual Disability/genetics , Mutation, Missense/genetics , Neurodevelopmental Disorders/genetics , Phenotype , Exome Sequencing
15.
J Pediatr ; 233: 268-272, 2021 06.
Article in English | MEDLINE | ID: mdl-33607125

ABSTRACT

Diacylglycerol O-acyltransferase 1 deficiency is a recently discovered, rare congenital diarrheal disorder. We report 2 patients with newly described pathogenic mutations in diacylglycerol O-acyltransferase 1 with compound heterozygous inheritance and unusual phenotypes. This included a macrophage activation syndrome-like response seen in one patient, ameliorated with low dietary fat.


Subject(s)
DNA/genetics , Diacylglycerol O-Acyltransferase/genetics , Diarrhea/genetics , Mutation , Biomarkers/blood , DNA Mutational Analysis , Diacylglycerol O-Acyltransferase/blood , Diarrhea/blood , Diarrhea/enzymology , Humans , Infant, Newborn , Male
16.
NPJ Genom Med ; 6(1): 5, 2021 Jan 28.
Article in English | MEDLINE | ID: mdl-33510162

ABSTRACT

In scaling up an ultra-rapid genomics program, we used implementation science principles to design and investigate influences on implementation and identify strategies required for sustainable "real-world" services. Interviews with key professionals revealed the importance of networks and relationship building, leadership, culture, and the relative advantage afforded by ultra-rapid genomics in the care of critically ill children. Although clinical geneticists focused on intervention characteristics and the fit with patient-centered care, intensivists emphasized the importance of access to knowledge, in particular from clinical geneticists. The relative advantage of ultra-rapid genomics and trust in consistent and transparent delivery were significant in creating engagement at initial implementation, with appropriate resourcing highlighted as important for longer term sustainability of implementation. Our findings demonstrate where common approaches can be used and, significantly, where there is a need to tailor support by professional role and implementation phase, to maximize the potential of ultra-rapid genomic testing to improve patient care.

17.
Am J Med Genet A ; 185(2): 434-439, 2021 02.
Article in English | MEDLINE | ID: mdl-33231930

ABSTRACT

Axenfeld-Rieger syndrome is a genetic condition characterized by ocular and systemic features and is most commonly caused by variants in the FOXC1 or PITX2 genes. Facial dysmorphism is part of the syndrome but the differences between both genes have never been systematically assessed. Here, 11 facial traits commonly reported in Axenfeld-Rieger syndrome were assessed by five clinical geneticists blinded to the molecular diagnosis. Individuals were drawn from the Australian and New Zealand Registry of Advanced Glaucoma in Australia or recruited through the Genetic and Ophthalmology Unit of l'Azienda Socio-Sanitaria Territoriale Grande Ospedale Metropolitano Niguarda in Italy. Thirty-four individuals from 18 families were included. FOXC1 variants were present in 64.7% of individuals and PITX2 variants in 35.3% of individuals. A thin upper lip (55.9%) and a prominent forehead (41.2%) were common facial features shared between both genes. Hypertelorism/telecanthus (81.8% vs 25.0%, p = 0.002) and low-set ears (31.8% vs 0.0%, p = 0.036) were significantly more prevalent in individuals with FOXC1 variants compared with PITX2 variants. These findings may assist clinicians in reaching correct clinical and molecular diagnoses, and providing appropriate genetic counseling.


Subject(s)
Abnormalities, Multiple/genetics , Anterior Eye Segment/abnormalities , Craniofacial Abnormalities/genetics , Eye Abnormalities/genetics , Eye Diseases, Hereditary/genetics , Forkhead Transcription Factors/genetics , Homeodomain Proteins/genetics , Muscular Atrophy/genetics , Transcription Factors/genetics , Abnormalities, Multiple/epidemiology , Abnormalities, Multiple/pathology , Adolescent , Adult , Aged , Anterior Eye Segment/pathology , Australia/epidemiology , Child , Child, Preschool , Craniofacial Abnormalities/epidemiology , Craniofacial Abnormalities/pathology , Eye Abnormalities/epidemiology , Eye Abnormalities/pathology , Eye Diseases, Hereditary/epidemiology , Eye Diseases, Hereditary/pathology , Female , Genetic Predisposition to Disease , Genotype , Humans , Infant , Italy/epidemiology , Male , Middle Aged , Muscular Atrophy/epidemiology , Muscular Atrophy/pathology , Mutation/genetics , Pedigree , Phenotype , Young Adult , Homeobox Protein PITX2
18.
JAMA ; 323(24): 2503-2511, 2020 06 23.
Article in English | MEDLINE | ID: mdl-32573669

ABSTRACT

Importance: Widespread adoption of rapid genomic testing in pediatric critical care requires robust clinical and laboratory pathways that provide equitable and consistent service across health care systems. Objective: To prospectively evaluate the performance of a multicenter network for ultra-rapid genomic diagnosis in a public health care system. Design, Setting, and Participants: Descriptive feasibility study of critically ill pediatric patients with suspected monogenic conditions treated at 12 Australian hospitals between March 2018 and February 2019, with data collected to May 2019. A formal implementation strategy emphasizing communication and feedback, standardized processes, coordination, distributed leadership, and collective learning was used to facilitate adoption. Exposures: Ultra-rapid exome sequencing. Main Outcomes and Measures: The primary outcome was time from sample receipt to ultra-rapid exome sequencing report. The secondary outcomes were the molecular diagnostic yield, the change in clinical management after the ultra-rapid exome sequencing report, the time from hospital admission to the laboratory report, and the proportion of laboratory reports returned prior to death or hospital discharge. Results: The study population included 108 patients with a median age of 28 days (range, 0 days to 17 years); 34% were female; and 57% were from neonatal intensive care units, 33% were from pediatric intensive care units, and 9% were from other hospital wards. The mean time from sample receipt to ultra-rapid exome sequencing report was 3.3 days (95% CI, 3.2-3.5 days) and the median time was 3 days (range, 2-7 days). The mean time from hospital admission to ultra-rapid exome sequencing report was 17.5 days (95% CI, 14.6-21.1 days) and 93 reports (86%) were issued prior to death or hospital discharge. A molecular diagnosis was established in 55 patients (51%). Eleven diagnoses (20%) resulted from using the following approaches to augment standard exome sequencing analysis: mitochondrial genome sequencing analysis, exome sequencing-based copy number analysis, use of international databases to identify novel gene-disease associations, and additional phenotyping and RNA analysis. In 42 of 55 patients (76%) with a molecular diagnosis and 6 of 53 patients (11%) without a molecular diagnosis, the ultra-rapid exome sequencing result was considered as having influenced clinical management. Targeted treatments were initiated in 12 patients (11%), treatment was redirected toward palliative care in 14 patients (13%), and surveillance for specific complications was initiated in 19 patients (18%). Conclusions and Relevance: This study suggests feasibility of ultra-rapid genomic testing in critically ill pediatric patients with suspected monogenic conditions in the Australian public health care system. However, further research is needed to understand the clinical value of such testing, and the generalizability of the findings to other health care settings.


Subject(s)
Critical Illness , Exome Sequencing/methods , Genetic Diseases, Inborn/genetics , Genetic Testing/methods , Australia , Child , Child, Preschool , Feasibility Studies , Female , Genetic Diseases, Inborn/diagnosis , Humans , Infant , Infant, Newborn , Male , National Health Programs , Prospective Studies , Time Factors
20.
Am J Med Genet A ; 182(5): 1273-1277, 2020 05.
Article in English | MEDLINE | ID: mdl-32141698

ABSTRACT

Autosomal dominant (de novo) mutations in PBX1 are known to cause congenital abnormalities of the kidney and urinary tract (CAKUT), with or without extra-renal abnormalities. Using trio exome sequencing, we identified a PBX1 p.(Arg107Trp) mutation in a deceased one-day-old neonate presenting with CAKUT, asplenia, and severe bilateral diaphragmatic thinning and eventration. Further investigation by droplet digital PCR revealed that the mutation had occurred post-zygotically in the father, with different variant allele frequencies of the mosaic PBX1 mutation in blood (10%) and sperm (20%). Interestingly, the father had subclinical hydronephrosis in childhood. With an expected recurrence risk of one in five, chorionic villus sampling and prenatal diagnosis for the PBX1 mutation identified recurrence in a subsequent pregnancy. The family opted to continue the pregnancy and the second affected sibling was stillborn at 35 weeks, presenting with similar severe bilateral diaphragmatic eventration, microsplenia, and complete sex reversal (46, XY female). This study highlights the importance of follow-up studies for presumed de novo and low-level mosaic variants and broadens the phenotypic spectrum of developmental abnormalities caused by PBX1 mutations.


Subject(s)
Congenital Abnormalities/genetics , Kidney/abnormalities , Perinatal Death , Pre-B-Cell Leukemia Transcription Factor 1/genetics , Urogenital Abnormalities/genetics , Congenital Abnormalities/blood , Congenital Abnormalities/mortality , Congenital Abnormalities/pathology , Exome , Fathers , Female , Gene Frequency , Humans , Infant, Newborn , Kidney/pathology , Male , Mosaicism , Mutation/genetics , Pre-B-Cell Leukemia Transcription Factor 1/blood , Pregnancy , Urinary Tract/pathology , Urogenital Abnormalities/blood , Urogenital Abnormalities/mortality , Urogenital Abnormalities/pathology , Exome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL
...