Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 213
Filter
1.
PLoS Med ; 21(3): e1004360, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38502656

ABSTRACT

BACKGROUND: Adjuvants are widely used to enhance and/or direct vaccine-induced immune responses yet rarely evaluated head-to-head. Our trial directly compared immune responses elicited by MF59 versus alum adjuvants in the RV144-like HIV vaccine regimen modified for the Southern African region. The RV144 trial of a recombinant canarypox vaccine vector expressing HIV env subtype B (ALVAC-HIV) prime followed by ALVAC-HIV plus a bivalent gp120 protein vaccine boost adjuvanted with alum is the only trial to have shown modest HIV vaccine efficacy. Data generated after RV144 suggested that use of MF59 adjuvant might allow lower protein doses to be used while maintaining robust immune responses. We evaluated safety and immunogenicity of an HIV recombinant canarypox vaccine vector expressing HIV env subtype C (ALVAC-HIV) prime followed by ALVAC-HIV plus a bivalent gp120 protein vaccine boost (gp120) adjuvanted with alum (ALVAC-HIV+gp120/alum) or MF59 (ALVAC-HIV+gp120/MF59) or unadjuvanted (ALVAC-HIV+gp120/no-adjuvant) and a regimen where ALVAC-HIV+gp120 adjuvanted with MF59 was used for the prime and boost (ALVAC-HIV+gp120/MF59 coadministration). METHODS AND FINDINGS: Between June 19, 2017 and June 14, 2018, 132 healthy adults without HIV in South Africa, Zimbabwe, and Mozambique were randomized to receive intramuscularly: (1) 2 priming doses of ALVAC-HIV (months 0 and 1) followed by 3 booster doses of ALVAC-HIV+gp120/MF59 (months 3, 6, and 12), n = 36; (2) 2 priming doses of ALVAC-HIV (months 0 and 1) followed by 3 booster doses of ALVAC-HIV+gp120/alum (months 3, 6, and 12), n = 36; (3) 4 doses of ALVAC-HIV+gp120/MF59 coadministered (months 0, 1, 6, and 12), n = 36; or (4) 2 priming doses of ALVAC-HIV (months 0 and 1) followed by 3 booster doses of ALVAC-HIV+gp120/no adjuvant (months 3, 6, and 12), n = 24. Primary outcomes were safety and occurrence and mean fluorescence intensity (MFI) of vaccine-induced gp120-specific IgG and IgA binding antibodies at month 6.5. All vaccinations were safe and well-tolerated; increased alanine aminotransferase was the most frequent related adverse event, occurring in 2 (1.5%) participants (1 severe, 1 mild). At month 6.5, vaccine-specific gp120 IgG binding antibodies were detected in 100% of vaccinees for all 4 vaccine groups. No significant differences were seen in the occurrence and net MFI of vaccine-specific IgA responses between the ALVAC-HIV+gp120/MF59-prime-boost and ALVAC-HIV+gp120/alum-prime-boost groups or between the ALVAC-HIV+gp120/MF59-prime-boost and ALVAC-HIV+gp120/MF59 coadministration groups. Limitations were the relatively small sample size per group and lack of evaluation of higher gp120 doses. CONCLUSIONS: Although MF59 was expected to enhance immune responses, alum induced similar responses to MF59, suggesting that the choice between these adjuvants may not be critical for the ALVAC+gp120 regimen. TRIAL REGISTRATION: HVTN 107 was registered with the South African National Clinical Trials Registry (DOH-27-0715-4894) and ClinicalTrials.gov (NCT03284710).


Subject(s)
AIDS Vaccines , Alum Compounds , HIV Infections , HIV-1 , Polysorbates , Squalene , Adult , Humans , Adjuvants, Immunologic , AIDS Vaccines/adverse effects , HIV Antibodies , HIV Infections/prevention & control , Immunogenicity, Vaccine , Immunoglobulin A , Immunoglobulin G , Vaccines, Combined , Vaccines, Synthetic
2.
Int J Mol Sci ; 25(2)2024 Jan 06.
Article in English | MEDLINE | ID: mdl-38255817

ABSTRACT

Demyelination in the central nervous system (CNS) resulting from injury or disease can cause loss of nerve function and paralysis. Cell therapies intended to promote remyelination of axons are a promising avenue of treatment, with mesenchymal stromal cells (MSCs) a prominent candidate. We have previously demonstrated that MSCs derived from human olfactory mucosa (hOM-MSCs) promote myelination to a greater extent than bone marrow-derived MSCs (hBM-MSCs). However, hOM-MSCs were developed using methods and materials that were not good manufacturing practice (GMP)-compliant. Before considering these cells for clinical use, it is necessary to develop a method for their isolation and expansion that is readily adaptable to a GMP-compliant environment. We demonstrate here that hOM-MSCs can be derived without enzymatic tissue digestion or cell sorting and without culture antibiotics. They grow readily in GMP-compliant media and express typical MSC surface markers. They robustly produce CXCL12 (a key secretory factor in promoting myelination) and are pro-myelinating in in vitro rodent CNS cultures. GMP-compliant hOM-MSCs are comparable in this respect to those grown in non-GMP conditions. However, when assessed in an in vivo model of demyelinating disease (experimental autoimmune encephalitis, EAE), they do not significantly improve disease scores compared with controls, indicating further pre-clinical evaluation is necessary before their advancement to clinical trials.


Subject(s)
Anti-Bacterial Agents , Mesenchymal Stem Cells , Humans , Culture Techniques , Axons , Biological Transport
3.
Glia ; 71(7): 1683-1698, 2023 07.
Article in English | MEDLINE | ID: mdl-36945189

ABSTRACT

There is an urgent need for therapies that target the multicellular pathology of central nervous system (CNS) disease. Modified, nonanticoagulant heparins mimic the heparan sulfate glycan family and are known regulators of multiple cellular processes. In vitro studies have demonstrated that low sulfated modified heparin mimetics (LS-mHeps) drive repair after CNS demyelination. Herein, we test LS-mHep7 (an in vitro lead compound) in experimental autoimmune encephalomyelitis (EAE) and cuprizone-induced demyelination. In EAE, LS-mHep7 treatment resulted in faster recovery and rapidly reduced inflammation which was accompanied by restoration of animal weight. LS-mHep7 treatment had no effect on remyelination or on OLIG2 positive oligodendrocyte numbers within the corpus callosum in the cuprizone model. Further in vitro investigation confirmed that LS-mHep7 likely mediates its pro-repair effect in the EAE model by sequestering inflammatory cytokines, such as CCL5 which are upregulated during immune-mediated inflammatory attacks. These data support the future clinical translation of this next generation modified heparin as a treatment for CNS diseases with active immune system involvement.


Subject(s)
Central Nervous System Diseases , Encephalomyelitis, Autoimmune, Experimental , Animals , Mice , Cuprizone/toxicity , Sulfates/adverse effects , Oligodendroglia/pathology , Encephalomyelitis, Autoimmune, Experimental/chemically induced , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/pathology , Corpus Callosum/pathology , Central Nervous System Diseases/pathology , Heparitin Sulfate/therapeutic use , Mice, Inbred C57BL , Disease Models, Animal , Myelin Sheath/pathology
4.
Biology (Basel) ; 12(3)2023 Mar 04.
Article in English | MEDLINE | ID: mdl-36979099

ABSTRACT

Therapies that target the multicellular pathology of central nervous system (CNS) disease/injury are urgently required. Modified non-anticoagulant heparins mimic the heparan sulphate (HS) glycan family and have been proposed as therapeutics for CNS repair since they are effective regulators of numerous cellular processes. Our in vitro studies have demonstrated that low-sulphated modified heparan sulphate mimetics (LS-mHeps) drive CNS repair. However, LS-mHeps are derived from pharmaceutical heparin purified from pig intestines, in a supply chain at risk of shortages and contamination. Alternatively, cellular synthesis of heparin and HS can be achieved using mammalian cell multiplex genome engineering, providing an alternative source of recombinant HS mimetics (rHS). TEGA Therapeutics (San Diego) have manufactured rHS reagents with varying degrees of sulphation and we have validated their ability to promote repair in vitro using models that mimic CNS injury, making comparisons to LS-mHep7, a previous lead compound. We have shown that like LS-mHep7, low-sulphated rHS compounds promote remyelination and reduce features of astrocytosis, and in contrast, highly sulphated rHS drive neurite outgrowth. Cellular production of heparin mimetics may, therefore, offer potential clinical benefits for CNS repair.

5.
Front Immunol ; 13: 939627, 2022.
Article in English | MEDLINE | ID: mdl-35935978

ABSTRACT

To control HIV infection there is a need for vaccines to induce broad, potent and long-term B and T cell immune responses. With the objective to accelerate and maintain the induction of substantial levels of HIV-1 Env-specific antibodies and, at the same time, to enhance balanced CD4 and CD8 T cell responses, we evaluated the effect of concurrent administration of MF59-adjuvanted Env protein together with DNA or NYVAC vectors at priming to establish if early administration of Env leads to early induction of antibody responses. The primary goal was to assess the immunogenicity endpoint at week 26. Secondary endpoints were (i) to determine the quality of responses with regard to RV144 correlates of protection and (ii) to explore a potential impact of two late boosts. In this study, five different prime/boost vaccination regimens were tested in rhesus macaques. Animals received priming immunizations with either NYVAC or DNA alone or in combination with Env protein, followed by NYVAC + protein or DNA + protein boosts. All regimens induced broad, polyfunctional and well-balanced CD4 and CD8 T cell responses, with DNA-primed regimens eliciting higher response rates and magnitudes than NYVAC-primed regimens. Very high plasma binding IgG titers including V1/V2 specific antibodies, modest antibody-dependent cellular cytotoxicity (ADCC) and moderate neutralization activity were observed. Of note, early administration of the MF59-adjuvanted Env protein in parallel with DNA priming leads to more rapid elicitation of humoral responses, without negatively affecting the cellular responses, while responses were rapidly boosted after repeated immunizations, indicating the induction of a robust memory response. In conclusion, our findings support the use of the Env protein component during priming in the context of an heterologous immunization regimen with a DNA and/or NYVAC vector as an optimized immunization protocol against HIV infection.


Subject(s)
AIDS Vaccines , HIV Infections , HIV Seropositivity , HIV-1 , Animals , Antibodies, Neutralizing , DNA , Gene Products, env , HIV Antibodies , HIV Infections/prevention & control , Macaca mulatta
6.
Methods Mol Biol ; 2429: 333-344, 2022.
Article in English | MEDLINE | ID: mdl-35507171

ABSTRACT

Striatum-derived neural stem cells have been used to generate a variety of neural cell populations. They are composed of free-floating clusters of clonal neural stem cells, termed neurospheres, and can be expanded under growth factor stimulation in vitro. The multipotent nature of neurospheres means that under certain growth conditions they can differentiate into neuronal and glial progenitors of the central nervous system (CNS).Here, we describe a method for creating a population of astrocytes derived from rat striatum neurospheres, which in turn can be used to generate astrocytes with different reactivity phenotypes. Several methods and techniques are already available for the generation of neurospheres, but the method detailed herein provides an accessible, reproducible protocol for large numbers of astrocyte cultures, that can then be manipulated in an experimental format for further investigation.


Subject(s)
Astrocytes , Neural Stem Cells , Animals , Cell Differentiation/physiology , Cells, Cultured , Immunohistochemistry , Phenotype , Rats
7.
Exp Neurol ; 354: 114113, 2022 08.
Article in English | MEDLINE | ID: mdl-35569511

ABSTRACT

Iron released from oligodendrocytes during demyelination or derived from haemoglobin breakdown products is believed to amplify oxidative tissue injury in multiple sclerosis (MS). However, the pathophysiological significance of iron-containing haemoglobin breakdown products themselves is rarely considered in the context of MS and their cellular specificity and mode of action remain unclear. Using myelinating cell cultures, we now report the cytotoxic potential of hemin (ferriprotoporphyrin IX chloride), a major degradation product of haemoglobin, is 25-fold greater than equimolar concentrations of free iron in myelinating cultures; a model that reproduces the complex multicellular environment of the CNS. At low micro molar concentrations (3.3 - 10 µM) we observed hemin preferentially binds to myelin and axons to initiate a complex detrimental response that results in targeted demyelination and axonal loss but spares neuronal cell bodies, astrocytes and the majority of oligodendroglia. Demyelination and axonal loss in this context are executed by a combination of mechanisms that include iron-dependent peroxidation by reactive oxygen species (ROS) and ferroptosis. These effects are microglial-independent, do not require any initiating inflammatory insult and represent a direct effect that compromises the structural integrity of myelinated axons in the CNS. Our data identify hemin-mediated demyelination and axonal loss as a novel mechanism by which intracerebral degradation of haemoglobin may contribute to lesion development in MS.


Subject(s)
Hemin , Multiple Sclerosis , Axons/pathology , Central Nervous System/pathology , Hemin/metabolism , Hemin/pharmacology , Humans , Iron/metabolism , Multiple Sclerosis/pathology , Myelin Sheath/pathology , Oligodendroglia/metabolism , Oxidative Stress
8.
Front Mol Neurosci ; 15: 860410, 2022.
Article in English | MEDLINE | ID: mdl-35493328

ABSTRACT

Zika virus (ZIKV) is a neurotropic flavivirus recently linked to congenital ZIKV syndrome in children and encephalitis and Guillain-Barré syndrome in adults. Neurotropic viruses often use axons to traffic to neuronal or glial cell somas where they either remain latent or replicate and proceed to infect new cells. Consequently, it has been suggested that axon degeneration could represent an evolutionarily conserved mechanism to limit viral spread. Whilst it is not known if ZIKV transits in axons, we previously reported that ZIKV infection of glial cells in a murine spinal cord-derived cell culture model of the CNS is associated with a profound loss of neuronal cell processes. This, despite that postmitotic neurons are relatively refractory to infection and death. Here, we tested the hypothesis that ZIKV-associated degeneration of neuronal processes is dependent on activation of Sterile alpha and armadillo motif-containing protein 1 (SARM1), an NADase that acts as a central executioner in a conserved axon degeneration pathway. To test this, we infected wild type and Sarm1 homozygous or heterozygous null cell cultures with ZIKV and examined NAD+ levels as well as the survival of neurons and their processes. Unexpectedly, ZIKV infection led to a rapid SARM1-independent reduction in NAD+. Nonetheless, the subsequent profound loss of neuronal cell processes was SARM1-dependent and was preceded by early changes in the appearance of ß-tubulin III staining. Together, these data identify a role for SARM1 in the pathogenesis of ZIKV infection, which may reflect SARM1's conserved prodegenerative function, independent of its NADase activity.

9.
Acta Neuropathol Commun ; 10(1): 12, 2022 01 29.
Article in English | MEDLINE | ID: mdl-35093166

ABSTRACT

One of the therapeutic approaches for the treatment of the autoimmune demyelinating disease, multiple sclerosis (MS) is bone marrow mesenchymal stromal cell (hBM-MSCs) transplantation. However, given their capacity to enhance myelination in vitro, we hypothesised that human olfactory mucosa-derived MSCs (hOM-MSCs) may possess additional properties suitable for CNS repair. Herein, we have examined the efficacy of hOM-MSCs versus hBM-MSCs using the experimental autoimmune encephalomyelitis (EAE) model. Both MSC types ameliorated disease, if delivered during the initial onset of symptomatic disease. Yet, only hOM-MSCs improved disease outcome if administered during established disease when animals had severe neurological deficits. Histological analysis of spinal cord lesions revealed hOM-MSC transplantation reduced blood-brain barrier disruption and inflammatory cell recruitment and enhanced axonal survival. At early time points post-hOM-MSC treatment, animals had reduced levels of circulating IL-16, which was reflected in both the ability of immune cells to secrete IL-16 and the level of IL-16 in spinal cord inflammatory lesions. Further in vitro investigation revealed an inhibitory role for IL-16 on oligodendrocyte differentiation and myelination. Moreover, the availability of bioactive IL-16 after demyelination was reduced in the presence of hOM-MSCs. Combined, our data suggests that human hOM-MSCs may have therapeutic benefit in the treatment of MS via an IL-16-mediated pathway, especially if administered during active demyelination and inflammation.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/therapy , Interleukin-16/metabolism , Mesenchymal Stem Cell Transplantation/methods , Myelin Sheath/metabolism , Olfactory Mucosa/cytology , Animals , Encephalomyelitis, Autoimmune, Experimental/metabolism , Humans , Mice , Neurogenesis/physiology
10.
Glia ; 69(8): 2023-2036, 2021 08.
Article in English | MEDLINE | ID: mdl-33942402

ABSTRACT

Some children with proven intrauterine Zika virus (ZIKV) infection who were born asymptomatic subsequently manifested neurodevelopmental delays, pointing to impairment of development perinatally and postnatally. To model this, we infected postnatal day (P) 5-6 (equivalent to the perinatal period in humans) susceptible mice with a mammalian cell-propagated ZIKV clinical isolate from the Brazilian outbreak in 2015. All infected mice appeared normal up to 4 days post-intraperitoneal inoculation (dpi), but rapidly developed severe clinical signs at 5-6 dpi. All nervous tissue examined at 5/6 dpi appeared grossly normal. However, anti-ZIKV positive cells were observed in the optic nerve, brain, and spinal cord; predominantly in white matter. Co-labeling with cell type specific markers demonstrated oligodendrocytes and astrocytes support productive infection. Rarely, ZIKV positive neurons were observed. In spinal cord white matter, which we examined in detail, apoptotic cells were evident; the density of oligodendrocytes was significantly reduced; and there was localized microglial reactivity including expression of the NLRP3 inflammasome. Together, our observations demonstrate that a clinically relevant ZIKV isolate can directly impact oligodendrocytes. As primary oligodendrocyte cell death can lead later to secondary autoimmune demyelination, our observations may help explain neurodevelopmental delays in infants appearing asymptomatic at birth and commend lifetime surveillance.


Subject(s)
Zika Virus Infection , Zika Virus , Animals , Disease Models, Animal , Female , Mice , Neurons , Oligodendroglia , Pregnancy , Zika Virus Infection/complications
11.
Cells ; 10(4)2021 04 14.
Article in English | MEDLINE | ID: mdl-33919910

ABSTRACT

The use of mesenchymal stem/stromal cells (MSCs) for transplant-mediated repair represents an important and promising therapeutic strategy after spinal cord injury (SCI). The appeal of MSCs has been fuelled by their ease of isolation, immunosuppressive properties, and low immunogenicity, alongside the large variety of available tissue sources. However, despite reported similarities in vitro, MSCs sourced from distinct tissues may not have comparable biological properties in vivo. There is accumulating evidence that stemness, plasticity, immunogenicity, and adaptability of stem cells is largely controlled by tissue niche. The extrinsic impact of cellular niche for MSC repair potential is therefore important, not least because of its impact on ex vivo expansion for therapeutic purposes. It is likely certain niche-targeted MSCs are more suited for SCI transplant-mediated repair due to their intrinsic capabilities, such as inherent neurogenic properties. In addition, the various MSC anatomical locations means that differences in harvest and culture procedures can make cross-comparison of pre-clinical data difficult. Since a clinical grade MSC product is inextricably linked with its manufacture, it is imperative that cells can be made relatively easily using appropriate materials. We discuss these issues and highlight the importance of identifying the appropriate niche-specific MSC type for SCI repair.


Subject(s)
Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/cytology , Nerve Regeneration/physiology , Spinal Cord Injuries/physiopathology , Spinal Cord Injuries/therapy , Stem Cell Niche , Humans
12.
Viruses ; 13(1)2021 Jan 11.
Article in English | MEDLINE | ID: mdl-33440758

ABSTRACT

Understanding how Zika virus (Flaviviridae; ZIKV) affects neural cells is paramount in comprehending pathologies associated with infection. Whilst the effects of ZIKV in neural development are well documented, impact on the adult nervous system remains obscure. Here, we investigated the effects of ZIKV infection in established mature myelinated central nervous system (CNS) cultures. Infection incurred damage to myelinated fibers, with ZIKV-positive cells appearing when myelin damage was first detected as well as axonal pathology, suggesting the latter was a consequence of oligodendroglia infection. Transcriptome analysis revealed host factors that were upregulated during ZIKV infection. One such factor, CCL5, was validated in vitro as inhibiting myelination. Transferred UV-inactivated media from infected cultures did not damage myelin and axons, suggesting that viral replication is necessary to induce the observed effects. These data show that ZIKV infection affects CNS cells even after myelination-which is critical for saltatory conduction and neuronal function-has taken place. Understanding the targets of this virus across developmental stages including the mature CNS, and the subsequent effects of infection of cell types, is necessary to understand effective time frames for therapeutic intervention.


Subject(s)
Axons/virology , Demyelinating Diseases/etiology , Zika Virus Infection/complications , Zika Virus Infection/virology , Zika Virus/physiology , Animals , Biomarkers , Cranial Nerve Injuries/etiology , Cranial Nerve Injuries/metabolism , Disease Models, Animal , Gene Expression Profiling , Humans , Mice , Rats , Transcriptome
13.
Clin Infect Dis ; 72(1): 50-60, 2021 01 23.
Article in English | MEDLINE | ID: mdl-31900486

ABSTRACT

BACKGROUND: The Pox-Protein Public-Private Partnership is performing a suite of trials to evaluate the bivalent subtype C envelope protein (TV1.C and 1086.C glycoprotein 120) vaccine in the context of different adjuvants and priming agents for human immunodeficiency virus (HIV) type 1 (HIV-1) prevention. METHODS: In the HIV Vaccine Trials Network 111 trial, we compared the safety and immunogenicity of DNA prime followed by DNA/protein boost with DNA/protein coadministration injected intramuscularly via either needle/syringe or a needle-free injection device (Biojector). One hundred thirty-two healthy, HIV-1-uninfected adults were enrolled from Zambia, South Africa, and Tanzania and were randomized to 1 of 6 arms: DNA prime, protein boost by needle/syringe; DNA and protein coadministration by needle/syringe; placebo by needle/syringe; DNA prime, protein boost with DNA given by Biojector; DNA and protein coadministration with DNA given by Biojector; and placebo by Biojector. RESULTS: All vaccinations were safe and well tolerated. DNA and protein coadministration was associated with increased HIV-1 V1/V2 antibody response rate, a known correlate of decreased HIV-1 infection risk. DNA administration by Biojector elicited significantly higher CD4+ T-cell response rates to HIV envelope protein than administration by needle/syringe in the prime/boost regimen (85.7% vs 55.6%; P = .02), but not in the coadministration regimen (43.3% vs 48.3%; P = .61). CONCLUSIONS: Both the prime/boost and coadministration regimens are safe and may be promising for advancement into efficacy trials depending on whether cellular or humoral responses are desired. CLINICAL TRIALS REGISTRATION: South African National Clinical Trials Registry (application 3947; Department of Health [DoH] no. DOH-27-0715-4917) and ClinicalTrials.gov (NCT02997969).


Subject(s)
AIDS Vaccines , HIV Infections , HIV-1 , AIDS Vaccines/therapeutic use , Adult , DNA , HIV Antibodies , HIV Infections/prevention & control , HIV-1/genetics , Humans , Immunization, Secondary , Immunogenicity, Vaccine , Polysorbates , South Africa , Squalene , Tanzania , Zambia
14.
Biomater Sci ; 8(13): 3611-3627, 2020 Jul 07.
Article in English | MEDLINE | ID: mdl-32515439

ABSTRACT

The limited regenerative capacity of the CNS poses formidable challenges to the repair of spinal cord injury (SCI). Two key barriers to repair are (i) the physical gap left by the injury, and (ii) the inhibitory milieu surrounding the injury, the glial scar. Biomaterial implantation into the injury site can fill the cavity, provide a substrate for cell migration, and potentially attenuate the glial scar. We investigated the biological viability of a biocompatible and biodegradable poly-ε-lysine based biomaterial, Proliferate®, in low and high cross-linked forms and when coated with IKVAV peptide, for SCI implantation. We demonstrate altered astrocyte morphology and nestin expression on Proliferate® compared to conventional glass cell coverslips suggesting a less reactive phenotype. Moreover Proliferate® supported myelination in vitro, with myelination observed sooner on IKVAV-coated constructs compared with uncoated Proliferate®, and delayed overall compared with maintenance on glass coverslips. For in vivo implantation, parallel-aligned channels were fabricated into Proliferate® to provide cell guidance cues. Extensive vascularisation and cellular infiltration were observed in constructs implanted in vivo, along with an astrocyte border and microglial response. Axonal ingrowth was observed at the construct border and inside implants in intact channels. We conclude that Proliferate® is a promising biomaterial for implantation following SCI.


Subject(s)
Biocompatible Materials/chemistry , Central Nervous System Diseases/therapy , Polylysine/chemistry , Prostheses and Implants , Spinal Cord Injuries/therapy , Animals , Biocompatible Materials/chemical synthesis , Cells, Cultured , Polylysine/chemical synthesis , Rats , Rats, Sprague-Dawley
16.
Spinal Cord ; 58(8): 844-856, 2020 08.
Article in English | MEDLINE | ID: mdl-32249830

ABSTRACT

INTRODUCTION: Spinal cord injury (SCI) is associated with significant and life-long disability. Yet, despite decades of research, no regenerative treatment has reached clinical practice. Cell-based therapies are one possible regenerative strategy beginning to transfer to human trials from a more extensive pre-clinical basis. METHODS: We therefore conducted a scoping review to synthesise all cell-based trials in SCI to consider the current state of the field and the cell transplant type or strategy with greatest promise. A search strategy of MEDLINE returned 1513 results. All clinical trials including adult human patients with acute or chronic, compete or incomplete SCI and a recorded ASIA score were sought. Exclusion criteria included non-traumatic SCI, paediatric patients and animal studies. A total of 43 studies, treating 1061 patients, were identified. Most trials evaluated cells from the bone marrow (22 papers, 660 patients) or the olfactory bulb (10 papers, 245 patients). RESULTS: Cell transplantation does appear to be safe, with no serious adverse effects being reported in the short-term. 86% of trials described efficacy as a primary outcome. However, varying degrees of outcome reporting prevented meta-analysis. No emerging cell type or technique was identified. The majority of trials, 53%, took place in developing countries, which may suggest more stringent regulatory requirements within Western countries. CONCLUSION: We believe cell-based transplantation translation remains in its infancy and that, although further robust clinical research is required, it is an important strategy to consider in the treatment of SCI.


Subject(s)
Cell Transplantation , Outcome Assessment, Health Care , Spinal Cord Injuries/therapy , Cell Transplantation/adverse effects , Cell Transplantation/statistics & numerical data , Humans , Outcome Assessment, Health Care/statistics & numerical data
17.
Sci Rep ; 10(1): 2093, 2020 02 07.
Article in English | MEDLINE | ID: mdl-32034163

ABSTRACT

In the RV144 trial, vaccine-induced V1V2 IgG correlated with decreased HIV-1 risk. We investigated circulating antibody specificities in two phase 1 poxvirus prime-protein boost clinical trials conducted in South Africa: HVTN 097 (subtype B/E) and HVTN 100 (subtype C). With cross-subtype peptide microarrays and multiplex binding assays, we probed the magnitude and breadth of circulating antibody responses to linear variable loop 2 (V2) and conformational V1V2 specificities. Antibodies targeting the linear V2 epitope, a correlate of decreased HIV-1 risk in RV144, were elicited up to 100% and 61% in HVTN 097 and HVTN 100, respectively. Despite higher magnitude of envelope-specific responses in HVTN 100 compared to HVTN 097 (p's < 0.001), the magnitude and positivity for V2 linear epitope and V1V2 proteins were significantly lower in HVTN 100 compared to HVTN 097. Meanwhile, responses to other major linear epitopes including the variable 3 (V3) and constant 5 (C5) epitopes were higher in HVTN 100 compared to HVTN 097. Our data reveal substantial differences in the circulating antibody specificities induced by vaccination in these two canarypox prime-protein boost trials. Our findings suggest that the choice of viral sequences in prime-boost vaccine regimens, and potentially adjuvants and immunogen dose, influence the elicitation of V2-specific antibodies.


Subject(s)
AIDS Vaccines/immunology , Antibodies, Viral/immunology , Antibody Formation/immunology , HIV-1/immunology , Antibody Specificity/immunology , Canarypox virus/immunology , Epitopes/immunology , Female , HIV Envelope Protein gp120/immunology , Humans , Immunization, Secondary , Male
18.
Nat Rev Neurol ; 16(4): 229-240, 2020 04.
Article in English | MEDLINE | ID: mdl-32099190

ABSTRACT

Spinal cord injury (SCI) remains one of the biggest challenges in the development of neuroregenerative therapeutics. Cell transplantation is one of numerous experimental strategies that have been identified and tested for efficacy at both preclinical and clinical levels in recent years. In this Review, we briefly discuss the state of human olfactory cell transplantation as a therapy, considering both its current clinical status and its limitations. Furthermore, we introduce a mesenchymal stromal cell derived from human olfactory tissue, which has the potential to induce multifaceted reparative effects in the environment within and surrounding the lesion. We argue that no single therapy will be sufficient to treat SCI effectively and that a combination of cell-based, rehabilitation and pharmaceutical interventions is the most promising approach to aid repair. For this reason, we also introduce a novel pharmaceutical strategy based on modifying the activity of heparan sulfate, an important regulator of a wide range of biological cell functions. The multi-target approach that is exemplified by these types of strategies will probably be necessary to optimize SCI treatment.


Subject(s)
Heparitin Sulfate/therapeutic use , Mesenchymal Stem Cell Transplantation/methods , Olfactory Mucosa/cytology , Spinal Cord Injuries/therapy , Spinal Cord Regeneration , Cell Transplantation/methods , Chondroitin Sulfate Proteoglycans/metabolism , Heparan Sulfate Proteoglycans/metabolism , Heparin/therapeutic use , Heparitin Sulfate/analogs & derivatives , Humans , Mesenchymal Stem Cells/cytology , Nerve Regeneration , Neuroglia , Olfactory Mucosa/physiology , Olfactory Receptor Neurons
19.
PLoS Pathog ; 15(12): e1008121, 2019 12.
Article in English | MEDLINE | ID: mdl-31794588

ABSTRACT

The ALVAC-HIV clade B/AE and equivalent SIV-based/gp120 + Alum vaccines successfully decreased the risk of virus acquisition in humans and macaques. Here, we tested the efficacy of HIV clade B/C ALVAC/gp120 vaccine candidates + MF59 or different doses of Aluminum hydroxide (Alum) against SHIV-Cs of varying neutralization sensitivity in macaques. Low doses of Alum induced higher mucosal V2-specific IgA that increased the risk of Tier 2 SHIV-C acquisition. High Alum dosage, in contrast, elicited serum IgG to V2 that correlated with a decreased risk of Tier 1 SHIV-C acquisition. MF59 induced negligible mucosal antibodies to V2 and an inflammatory profile with blood C-reactive Protein (CRP) levels correlating with neutralizing antibody titers. MF59 decreased the risk of Tier 1 SHIV-C acquisition. The relationship between vaccine efficacy and the neutralization profile of the challenge virus appear to be linked to the different immunological spaces created by MF59 and Alum via CXCL10 and IL-1ß, respectively.


Subject(s)
Adjuvants, Immunologic/pharmacology , Alum Compounds/pharmacology , Antibodies, Neutralizing/immunology , SAIDS Vaccines/chemistry , SAIDS Vaccines/immunology , AIDS Vaccines/chemistry , AIDS Vaccines/immunology , Animals , Antibodies, Viral/immunology , Female , HIV Infections , Macaca mulatta , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Viral Vaccines/chemistry , Viral Vaccines/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...