Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Glia ; 65(4): 639-656, 2017 04.
Article in English | MEDLINE | ID: mdl-28144983

ABSTRACT

Autologous cell transplantation is a promising strategy for repair of the injured spinal cord. Here we have studied the repair potential of mesenchymal stromal cells isolated from the human olfactory mucosa after transplantation into a rodent model of incomplete spinal cord injury. Investigation of peripheral type remyelination at the injury site using immunocytochemistry for P0, showed a more extensive distribution in transplanted compared with control animals. In addition to the typical distribution in the dorsal columns (common to all animals), in transplanted animals only, P0 immunolabelling was consistently detected in white matter lateral and ventral to the injury site. Transplanted animals also showed reduced cavitation. Several functional outcome measures including end-point electrophysiological testing of dorsal column conduction and weekly behavioural testing of BBB, weight bearing and pain, showed no difference between transplanted and control animals. However, gait analysis revealed an earlier recovery of co-ordination between forelimb and hindlimb stepping in transplanted animals. This improvement in gait may be associated with the enhanced myelination in ventral and lateral white matter, where fibre tracts important for locomotion reside. Autologous transplantation of mesenchymal stromal cells from the olfactory mucosa may therefore be therapeutically beneficial in the treatment of spinal cord injury. GLIA 2017 GLIA 2017;65:639-656.


Subject(s)
Gait Disorders, Neurologic/etiology , Gait Disorders, Neurologic/surgery , Mesenchymal Stem Cell Transplantation/methods , Olfactory Mucosa/cytology , Remyelination/physiology , Spinal Cord Injuries/complications , Animals , Cell Adhesion Molecules, Neuronal/metabolism , Disease Models, Animal , Electroencephalography , Evoked Potentials, Somatosensory/physiology , Exploratory Behavior/physiology , Humans , Locomotion/physiology , Male , Myelin P0 Protein/metabolism , Nerve Tissue Proteins/metabolism , Pain Measurement , Rats , Rats, Sprague-Dawley , Weight-Bearing
2.
Neurochem Res ; 42(6): 1599-1609, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28120153

ABSTRACT

Effective transplant-mediated repair of ischemic brain lesions entails extensive tissue remodeling, especially in the ischemic core. Neural stem cells (NSCs) are promising reparative candidates for stroke induced lesions, however, their survival and integration with the host-tissue post-transplantation is poor. In this study, we address this challenge by testing whether co-grafting of NSCs with olfactory ensheathing cells (OECs), a special type of glia with proven neuroprotective, immunomodulatory, and angiogenic effects, can promote graft survival and host tissue remodelling. Transient focal cerebral ischemia was induced in adult rats by a 60-min middle cerebral artery occlusion (MCAo) followed by reperfusion. Ischemic lesions were verified by neurological testing and magnetic resonance imaging. Transplantation into the globus pallidus of NSCs alone or in combination with OECs was performed at two weeks post-MCAo, followed by histological analyses at three weeks post-transplantation. We found evidence of extensive vascular remodelling in the ischemic core as well as evidence of NSC motility away from the graft and into the infarct border in severely lesioned animals co-grafted with OECs. These findings support a possible role of OECs as part of an in situ tissue engineering paradigm for transplant mediated repair of ischemic brain lesions.


Subject(s)
Ischemic Attack, Transient/pathology , Ischemic Attack, Transient/therapy , Neural Stem Cells/transplantation , Neuronal Plasticity , Olfactory Bulb/transplantation , Stem Cell Transplantation/methods , Age Factors , Animals , Cells, Cultured , Coculture Techniques , Humans , Male , Neural Stem Cells/physiology , Neuronal Plasticity/physiology , Olfactory Bulb/cytology , Olfactory Bulb/physiology , Rats , Rats, Sprague-Dawley , Treatment Outcome
3.
Stem Cell Reports ; 6(5): 729-742, 2016 05 10.
Article in English | MEDLINE | ID: mdl-27117785

ABSTRACT

Previously we reported that nestin-positive human mesenchymal stromal cells (MSCs) derived from the olfactory mucosa (OM) enhanced CNS myelination in vitro to a greater extent than bone-marrow-derived MSCs (BM-MSCs). miRNA-based fingerprinting revealed the two MSCs were 64% homologous, with 26 miRNAs differentially expressed. We focused on miR-146a-5p and miR-140-5p due to their reported role in the regulation of chemokine production and myelination. The lower expression of miR-140-5p in OM-MSCs correlated with higher secretion of CXCL12 compared with BM-MSCs. Addition of CXCL12 and its pharmacological inhibitors to neural co-cultures supported these data. Studies on related miR-146a-5p targets demonstrated that OM-MSCs had lower levels of Toll-like receptors and secreted less pro-inflammatory cytokines, IL-6, IL-8, and CCL2. OM-MSCs polarized microglia to an anti-inflammatory phenotype, illustrating potential differences in their inflammatory response. Nestin-positive OM-MSCs could therefore offer a cell transplantation alternative for CNS repair, should these biological behaviors be translated in vivo.


Subject(s)
Cell Differentiation/genetics , Mesenchymal Stem Cells/metabolism , MicroRNAs/genetics , Olfactory Mucosa/metabolism , Bone Marrow Cells/cytology , Bone Marrow Cells/metabolism , Cell Proliferation/genetics , Chemokine CXCL12/genetics , DNA Fingerprinting , Gene Expression Regulation, Developmental/genetics , Humans , Mesenchymal Stem Cells/cytology , Olfactory Mucosa/cytology , Toll-Like Receptors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL