Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Soft Matter ; 19(9): 1695-1704, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36779972

ABSTRACT

Self-organisation is the spontaneous emergence of spatio-temporal structures and patterns from the interaction of smaller individual units. Examples are found across many scales in very different systems and scientific disciplines, from physics, materials science and robotics to biology, geophysics and astronomy. Recent research has highlighted how self-organisation can be both mediated and controlled by confinement. Confinement is an action over a system that limits its units' translational and rotational degrees of freedom, thus also influencing the system's phase space probability density; it can function as either a catalyst or inhibitor of self-organisation. Confinement can then become a means to actively steer the emergence or suppression of collective phenomena in space and time. Here, to provide a common framework and perspective for future research, we examine the role of confinement in the self-organisation of soft-matter systems and identify overarching scientific challenges that need to be addressed to harness its full scientific and technological potential in soft matter and related fields. By drawing analogies with other disciplines, this framework will accelerate a common deeper understanding of self-organisation and trigger the development of innovative strategies to steer it using confinement, with impact on, e.g., the design of smarter materials, tissue engineering for biomedicine and in guiding active matter.

2.
Phys Rev E ; 104(1-1): 014801, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34412236

ABSTRACT

A rectangular thin elastic sheet is deformed by forcing a contact between two points at the middle of its length. A transition to buckling with stress focusing is reported for the sheets sufficiently narrow with a critical width proportional to the sheet length with an exponent 2/3 in the small thickness limit. Additionally, a spring network model is solved to explore the thick sheet limit and to validate the scaling behavior of the transition in the thin sheet limit. The numerical results reveal that buckling does not exist for the thickest sheets, and a stability criterion is established for the buckling of a curved sheet.

3.
Phys Rev Lett ; 125(23): 238003, 2020 Dec 04.
Article in English | MEDLINE | ID: mdl-33337207

ABSTRACT

The dynamics of self-propelled particles with curved trajectories is investigated. Two modes are observed, a bulk mode with a quasicircular motion and a surface mode with the particles following the walls. The surface mode is the only mode of ballistic transport and the particle current is polar and depends on the particles' chirality. We show that a robust sorting and extraction occurs when the particles explore a domain with two exit gates collecting selectively the particles circling left and right. With a counterslope, the extraction rate is found to increase while the sorting error is reduced.

4.
Phys Rev E ; 99(5-1): 052605, 2019 May.
Article in English | MEDLINE | ID: mdl-31212491

ABSTRACT

A collection of self-propelled elongated particles is circulating in a circular track. Due to the presence of a bottleneck, the flow transits to a congested state for a sufficient number of particles, even if the whole track is not saturated. Both experiments and simulations are used to identify the transition toward congestion. An intermediate regime of coexistence is characterized by intermittency between a free flow state and a jammed state. The range of the coexistence region is found to depend explicitly on fluctuating quantities such as the distribution of the escape times from a jam and the headway time distribution between free particles. Optimization strategies, such as the "slower is faster" effect, are tested in experiments and simulations, and an increase in the traffic performances is reported.

5.
Phys Rev Lett ; 113(21): 214301, 2014 Nov 21.
Article in English | MEDLINE | ID: mdl-25479496

ABSTRACT

An elastic strip is transversely clamped in a curved frame. The induced curvature decreases as the strip opens and connects to its flat natural shape. Various ribbon profiles are measured and the scaling law for the opening length validates a description where the in-plane stretching gradually relaxes the bending stress. An analytical model of the strip profile is proposed and a quantitative agreement is found with both experiments and simulations of the plates equations. This result provides a unique illustration of smooth nondevelopable solutions in thin sheets.

6.
Small ; 6(9): 1060-5, 2010 May 07.
Article in English | MEDLINE | ID: mdl-20394067

ABSTRACT

Electromechanical resonators are a key element in radio-frequency telecommunication devices and thus new resonator concepts from nanotechnology can readily find important industrial opportunities. Here, the successful experimental realization of AM, FM, and digital demodulation with suspended single-walled carbon-nanotube resonators in a field-effect transistor configuration is reported. The crucial role played by the electromechanical resonance in demodulation is clearly demonstrated. The FM technique is shown to lead to the suppression of unwanted background signals and the reduction of noise for a better detection of the mechanical motion of nanotubes. The digital data-transfer rate of standard cell-phone technology is within the reach of these devices.


Subject(s)
Cell Phone , Nanotechnology/instrumentation , Nanotubes, Carbon/chemistry , Oscillometry/instrumentation , Signal Processing, Computer-Assisted/instrumentation , Telecommunications/instrumentation , Crystallization/methods , Equipment Design , Equipment Failure Analysis , Nanotubes, Carbon/ultrastructure , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL
...