Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
Heliyon ; 10(9): e30291, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38737258

ABSTRACT

Policosanols (PCs) are bioactive compounds extracted from different natural waxes. In this work, the purification, characterization and assessment of the antioxidant and anti-inflammatory activity was carried out on PCs from an innovative source, i.e. a waxy material from supercritical-fluid extraction (SFE) of non-psychoactive Cannabis sativa L. (hemp) inflorescences. Starting from this material, PCs were obtained by microwave-assisted trans-esterification and hydrolysis, followed by preparative liquid chromatography under normal phase conditions. The purified product was characterized using high-performance liquid chromatography (HPLC) with an evaporative light scattering detector (ELSD). In vitro cell-free and cell-based antioxidant and anti-inflammatory assays were then performed to assess their bioactivity. HPLC-ELSED analysis of the purified mixture from hemp wax revealed C26OH and C28OH as the main compounds. In vitro assays indicated an inhibition of intracellular reactive oxygen species (ROS) production, a reduction of nuclear factor kappa B (NF-κB) activation and of the activity of the neutrophil elastase. Immunoblotting assays allowed us to hypothesize the mechanism of action of the compounds of interest, given the higher levels of MAPK-activated protein kinase 2 (MK2) and heme oxygenase-1 (HO-1) protein expression in the PC pretreated HaCaT cells. In conclusion, even if more research is needed to unveil other molecular mechanisms involved in hemp PC activity, the results of this work suggest that these compounds may have potential for use in oxinflammation processes.

2.
RSC Adv ; 14(9): 6410-6415, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38380241

ABSTRACT

Deuterated proanthocyanidin metabolite 5-(3',4'-dihydroxyphenyl)-γ-valerolactone has been successfully produced. This metabolite is responsible for several proanthocyanidin protective effects in the field of cancer chemoprevention, skin wrinkle-prevention, and antimicrobials. The synthetic approach applied employs a short reaction sequence and allows the incorporation of four deuterium atoms on non-exchangeable sites, making it an attractive strategy to produce a stable isotopically labeled internal standard for quantitative mass spectrometry isotope dilution-based methods, as demonstrated by developing an LC-MS/MS method to quantify DHPV in urine samples. Overall, this efficient synthesis provides a valuable analytical tool for the study of the metabolic conversion of proanthocyanidins thus helping to investigate the biological effect and establishing the active dose of the key catabolite 5-(3',4'-dihydroxyphenyl)-γ-valerolactone.

3.
Molecules ; 28(7)2023 Mar 26.
Article in English | MEDLINE | ID: mdl-37049725

ABSTRACT

The present paper reports a sustainable raw material obtained from the by-products derived from the industrial production of bergamot (Citrus × Bergamia Risso & Poiteau) essential oils. The procedure to obtain the raw material is designed to maintain as much of the bioactive components as possible and to avoid expensive chemical purification. It consists of spray-drying the fruit juice obtained by squeezing the fruits, which is mixed with the aqueous extract of the pulp, i.e., the solid residue remained after fruit pressing. The resulting powder bergamot juice (PBJ) contains multiple bioactive components, in particular, among others, soluble fibers, polyphenols and amino-acid betaines, such as stachydrine and betonicine. LC-MS analysis identified 86 compounds, with hesperetin, naringenin, apigenin and eridictyol glucosides being the main components. In the second part of the paper, dose-dependent anti-inflammatory activity of PBJ and of stachydrine was found, but neither of the compounds were effective in activating Nrf2. PBJ was then found to be effective in an in vivo model of a metabolic syndrome induced by a high-sugar, high-fat (HSF) diet and evidenced by a significant increase of the values related to a set of parameters: blood glucose, triglycerides, insulin resistance, systolic blood pressure, visceral adipose tissue and adiposity index. PBJ, when given to control rats, did not significantly change these values; in contrast, they were found to be greatly affected in rats receiving an HSF diet. The in vivo effect of PBJ can be ascribed not only to bergamot polyphenols with well-known anti-inflammatory, antioxidant and lipid-regulating effects, but also to the dietary fibers and to the non-phenolic constituents, such as stachydrine. Moreover, since PBJ was found to affect energy homeostasis and to regulate food intake, a mechanism on the regulation of energy homeostasis through leptin networking should also be considered and deserves further investigation.


Subject(s)
Citrus , Oils, Volatile , Animals , Rats , Oils, Volatile/pharmacology , Polyphenols/pharmacology , Polyphenols/chemistry , Phytochemicals/pharmacology , Mass Spectrometry , Citrus/chemistry , Anti-Inflammatory Agents/pharmacology
4.
Mol Cell Endocrinol ; 566-567: 111908, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36868453

ABSTRACT

Low-grade chronic inflammation in obesity is associated with leptin resistance. In order to alleviate this pathological condition, bioactive compounds capable of attenuating oxidative stress and inflammation have been researched, and bergamot (Citrus bergamia) presents these properties. The aim was to evaluate the effect of bergamot leaves extract on leptin resistance in obese rats. Animals were divided into 2 groups: control diet (C, n = 10) and high sugar-fat diet (HSF, n = 20) for 20 weeks. After detecting hyperleptinemia, animals were divided to begin the treatment with bergamot leaves extract (BLE) for 10 weeks: C + placebo (n = 7), HSF + placebo (n = 7), and HSF + BLE (n = 7) by gavage (50 mg/kg). Evaluations included nutritional, hormonal and metabolic parameters; adipose tissue dysfunction; inflammatory, oxidative markers and hypothalamic leptin pathway. HSF group presented obesity, metabolic syndrome, adipose tissue dysfunction, hyperleptinemia and leptin resistance compared to control group. However, the treated group showed a decrease in caloric consumption and attenuation of insulin resistance. Moreover, dyslipidemia, adipose tissue function, and leptin levels showed an improvement. At the level of the hypothalamus, the treated group showed a reduction of oxidative stress, inflammation and modulation of leptin signaling. In conclusion, BLE properties were able to improve leptin resistance through recovery of the hypothalamic pathway.


Subject(s)
Citrus , Leptin , Rats , Animals , Leptin/metabolism , Citrus/metabolism , Obesity/metabolism , Inflammation/drug therapy , Inflammation/complications , Diet, High-Fat , Plant Leaves/metabolism
5.
Molecules ; 28(3)2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36771023

ABSTRACT

Plant secondary metabolites, known as phytochemicals, have recently gained much attention in light of the "circular economy", to reutilize waste products deriving from agriculture and food industry. Phytochemicals are known for their onco-preventive and chemoprotective effects, among several other beneficial properties. Apple phytochemicals have been extensively studied for their effectiveness in a wide range of diseases, cancer included. This review aims to provide a thorough overview of the main studies reported in the literature concerning apple phytochemicals, mostly polyphenols, in cancer prevention. Although there are many different mechanisms targeted by phytochemicals, the Nrf2 and NF-κB signaling pathways are the ones this review will be focused on, highlighting also the existing crosstalk between these two systems.


Subject(s)
Malus , Neoplasms , Humans , NF-kappa B/metabolism , Malus/metabolism , NF-E2-Related Factor 2/metabolism , Signal Transduction , Neoplasms/prevention & control , Neoplasms/metabolism , Phytochemicals/pharmacology , Phytochemicals/therapeutic use
6.
Int J Mol Sci ; 24(3)2023 Jan 21.
Article in English | MEDLINE | ID: mdl-36768458

ABSTRACT

Very recently, we have developed a new generation of ligands targeting the cannabinoid receptor type 2 (CB2R), namely JR compounds, which combine the pharmacophoric portion of the CB2R positive allosteric modulator (PAM), EC21a, with that of the CB2R selective orthosteric agonist LV62, both synthesized in our laboratories. The functional examination enabled us to identify JR14a, JR22a, and JR64a as the most promising compounds of the series. In the current study, we focused on the assessment of the bitopic (dualsteric) nature of these three compounds. Experiments in cAMP assays highlighted that only JR22a behaves as a CB2R bitopic (dualsteric) ligand. In parallel, computational studies helped us to clarify the binding mode of these three compounds at CB2R, confirming the bitopic (dualsteric) nature of JR22a. Finally, the potential of JR22a to prevent neuroinflammation was investigated on a human microglial cell inflammatory model.


Subject(s)
Allosteric Site , Humans , Ligands , Receptors, Cannabinoid , Allosteric Regulation
7.
Int J Food Sci Nutr ; 74(1): 64-71, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36519349

ABSTRACT

Metabolic Syndrome (MetS), inflammation and oxidative stress contribute to impairment of skeletal muscle function. Bergamot (Citrus bergamia) leaf extract (BLE) has shown protective effects against comorbidities associated with MetS through its anti-inflammatory and antioxidant effects. The aim of this work was to elucidate the antioxidant and anti-inflammatory activity of BLE in skeletal muscles in an experimental model of MetS. Once metabolic syndrome was diagnosed, animals were divided into groups receiving different treatments for 10 weeks, including control diet (n = 10), control + BLE (n = 10), High Sugar-fat diet (HSF) (n = 10), HSF + BLE (n = 10). Evaluation included nutritional, metabolic and hormonal analyses, along with measurements of inflammatory status and oxidative stress in soleus and extensor digitorum longus (EDL) muscles. BLE showed positive metabolic effects, with a reduction of plasma triglycerides and insulin resistance and an increase in high-density lipoprotein cholesterol, and protective activity against oxidative stress and inflammation in Soleus and EDL muscles in animals with MetS.


Subject(s)
Citrus , Metabolic Syndrome , Oils, Volatile , Animals , Antioxidants/metabolism , Muscle, Skeletal/metabolism , Diet, High-Fat , Anti-Inflammatory Agents , Inflammation/metabolism , Plant Extracts
8.
Talanta ; 252: 123824, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36027618

ABSTRACT

Mpro represents one of the most promising drug targets for SARS-Cov-2, as it plays a crucial role in the maturation of viral polyproteins into functional proteins. HTS methods are currently used to screen Mpro inhibitors, and rely on searching chemical databases and compound libraries, meaning that they only consider previously structurally clarified and isolated molecules. A great advancement in the hit identification strategy would be to set-up an approach aimed at exploring un-deconvoluted mixtures of compounds such as plant extracts. Hence, the aim of the present study is to set-up an analytical platform able to fish-out bioactive molecules from complex natural matrices even where there is no knowledge on the constituents. The proposed approach begins with a metabolomic step aimed at annotating the MW of the matrix constituents. A further metabolomic step is based on identifying those natural electrophilic compounds able to form a Michael adduct with thiols, a peculiar chemical feature of many Mpro inhibitors that covalently bind the catalytic Cys145 in the active site, thus stabilizing the complex. A final step consists of incubating recombinant Mpro with natural extracts and identifying compounds adducted to the residues within the Mpro active site by bottom-up proteomic analysis (nano-LC-HRMS). Data analysis is based on two complementary strategies: (i) a targeted search applied by setting the adducted moieties identified as Michael acceptors of Cys as variable modifications; (ii) an untargeted approach aimed at identifying the whole range of adducted peptides containing Cys145 on the basis of the characteristic b and y fragment ions independent of the adduct. The method was set-up and then successfully tested to fish-out bioactive compounds from the crude extract of Scutellaria baicalensis, a Chinese plant containing the catechol-like flavonoid baicalin and its corresponding aglycone baicalein which are well-established inhibitors of Mpro. Molecular dynamics (MD) simulations were carried out in order to explore the binding mode of baicalin and baicalein, within the SARS-CoV-2 Mpro active site, allowing a better understanding of the role of the nucleophilic residues (i.e. His41, Cys145, His163 and His164) in the protein-ligand recognition process.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Animals , Coronavirus 3C Proteases , Peptide Hydrolases , Proteomics , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Protease Inhibitors/metabolism , Molecular Docking Simulation , Complex Mixtures , Antiviral Agents/pharmacology , Antiviral Agents/chemistry
9.
Molecules ; 27(23)2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36500411

ABSTRACT

A multidisciplinary investigation on Achillea moschata Wulfen (Asteraceae) is outlined herein. This work, part of the European Interreg Italy-Switzerland B-ICE project, originated from an ethnobotanical survey performed in Chiesa in Valmalenco (Sondrio, Lombardy, Northern Italy) in 2019-2021 which highlighted this species' relevance of use in folk medicine to treat gastrointestinal diseases. In addition, this contribution included analyses of the: (a) phytochemical profile of the aqueous and methanolic extracts of the dried flower heads using LC-MS/MS; (b) morpho-anatomy and histochemistry of the vegetative and reproductive organs through Light, Fluorescence, and Scanning Electron Microscopy; (c) biological activity of the aqueous extract concerning the antioxidant and anti-inflammatory potential through cell-based in vitro models. A total of 31 compounds (5 phenolic acids, 13 flavonols, and 13 flavones) were detected, 28 of which included in both extracts. Covering and secreting trichomes were observed: the biseriate 10-celled glandular trichomes prevailing on the inflorescences represented the main sites of synthesis of the polyphenols and flavonoids detected in the extracts, along with volatile terpenoids. Finally, significant antioxidant and anti-inflammatory activities of the aqueous extract were documented, even at very low concentrations; for the first time, the in vitro tests allowed us to formulate hypotheses about the mechanism of action. This work brings an element of novelty due to the faithful reproduction of the traditional aqueous preparation and the combination of phytochemical and micromorphological research approaches.


Subject(s)
Achillea , Achillea/chemistry , Chromatography, Liquid , Plant Extracts/pharmacology , Plant Extracts/chemistry , Tandem Mass Spectrometry , Antioxidants/pharmacology , Antioxidants/chemistry , Anti-Inflammatory Agents/pharmacology , Phytochemicals/pharmacology
10.
J Med Chem ; 65(20): 13946-13966, 2022 10 27.
Article in English | MEDLINE | ID: mdl-36201615

ABSTRACT

The management of patients with type 2 diabetes mellitus (T2DM) is shifting from cardio-centric to weight-centric or, even better, adipose-centric treatments. Considering the downsides of multidrug therapies and the relevance of dipeptidyl peptidase IV (DPP IV) and carbonic anhydrases (CAs II and V) in T2DM and in the weight loss, we report a new class of multitarget ligands targeting the mentioned enzymes. We started from the known α1-AR inhibitor WB-4101, which was progressively modified through a tailored morphing strategy to optimize the potency of DPP IV and CAs while losing the adrenergic activity. The obtained compound 12 shows a satisfactory DPP IV inhibition with a good selectivity CA profile (DPP IV IC50: 0.0490 µM; CA II Ki 0.2615 µM; CA VA Ki 0.0941 µM; CA VB Ki 0.0428 µM). Furthermore, its DPP IV inhibitory activity in Caco-2 and its acceptable pre-ADME/Tox profile indicate it as a lead compound in this novel class of multitarget ligands.


Subject(s)
Carbonic Anhydrases , Diabetes Mellitus, Type 2 , Dipeptidyl-Peptidase IV Inhibitors , Humans , Dipeptidyl Peptidase 4 , Diabetes Mellitus, Type 2/drug therapy , Carbonic Anhydrase Inhibitors/pharmacology , Carbonic Anhydrase Inhibitors/therapeutic use , Caco-2 Cells , Ligands , Adrenergic Agents , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Hypoglycemic Agents/pharmacology
11.
Antioxidants (Basel) ; 11(8)2022 Aug 15.
Article in English | MEDLINE | ID: mdl-36009298

ABSTRACT

The qualitative profile of thinned apple polyphenols (TAP) fraction (≈24% of polyphenols) obtained by purification through absorbent resin was fully investigated by LC-HRMS in positive and negative ion mode and using ESI source. A total of 68 polyphenols were identified belonging to six different classes: flavanols, flavonols, dihydrochalchones, flavanones, flavones and organic and phenolic acids. The antioxidant and anti-inflammatory activities were then investigated in cell models with gene reporter for NRF2 and NF-κB and by quantitative proteomic (label-free and SILAC) approaches. TAP dose-dependently activated NRF2 and in the same concentration range (10-250 µg/mL) inhibited NF-κB nuclear translocation induced by TNF-α and IL-1α as pro-inflammatory promoters. Proteomic studies elucidated the molecular pathways evoked by TAP treatment: activation of the NRF2 signaling pathway, which in turn up-regulates protective oxidoreductases and their nucleophilic substrates such as GSH and NADPH, the latter resulting from the up-regulation of the pentose phosphate pathway. The increase in the enzymatic antioxidant cellular activity together with the up-regulation of the heme-oxygenase would explain the anti-inflammatory effect of TAP. The results suggest that thinned apples can be considered as a valuable source of apple polyphenols to be used in health care products to prevent/treat oxidative and inflammatory chronic conditions.

12.
Mol Cell Endocrinol ; 556: 111721, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35917880

ABSTRACT

Bergamot citrus (Citrus bergamia Risso et Poiteau), have been used as a strategy to prevent or treat comorbidities associated with metabolic syndrome parameters, such as cardiorenal metabolic syndrome (CRMS). The aim was to test the effect of bergamot leaf extract on CRMS and associated pathophysiological factors in rats fed with a high sugar-fat diet. Animals were divided into two experimental groups with control diet (Control, n = 30) and high sugar-fat diet (HSF, n = 30) for 20 weeks. Once CRMS was detected, animals were redivided to begin the treatment with Bergamot Leaf Extract (BLE) by gavage (50 mg/kg) for 10 weeks: control diet + placebo (Control, n = 09), control diet + BLE (Control + BLE, n = 09), HSF diet + placebo (HSF, n = 09), HSF + BLE (n = 09). Evaluation included nutritional, metabolic and hormonal analysis; and renal and cardiac parameters. HSF groups presented obesity, dyslipidemia, hypertension, hyperglycemia, hyperinsulinemia, insulin resistance. BLE showed protection against effects on hypertriglyceridemia, insulin resistance, renal damage, and structural and functional alterations of the heart. Conclusion: Bergamot leaf extract shows potential as a therapeutic to treat CRMS in animals fed with a high sugar-fat diet.


Subject(s)
Citrus , Insulin Resistance , Metabolic Syndrome , Oils, Volatile , Animals , Citrus/chemistry , Diet, High-Fat/adverse effects , Metabolic Syndrome/complications , Metabolic Syndrome/drug therapy , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Rats , Sugars/therapeutic use
13.
Antioxidants (Basel) ; 11(6)2022 Jun 16.
Article in English | MEDLINE | ID: mdl-35740083

ABSTRACT

Enocianina is an anthocyanin-rich extract obtained from grape pomace. It is widely used as a colorant in the food industry and, in addition to anthocyanins, it also contains a variety of polyphenols. To understand whether enocianina, besides its coloring effect, may offer potential health benefit applications, we aimed to fully characterize the profile of four commercial enocianinas and assess their radical scavenging, enzymatic, antioxidant, and anti-inflammatory activities. LC-ESI-MS/MS analysis identified 90 phytochemicals. The relative content of each anthocyanin was assessed by a semi-quantitative analysis, with malvidin derivatives being the most abundant. UV-VIS spectroscopy detected total amounts of polyphenols and anthocyanins of 23% and 3.24%, respectively, indicating that anthocyanins represent a minor fraction of total polyphenols. Multiple linear regression analysis indicated that the radical scavenging activity is related to the total polyphenol content and not to anthocyanins. All four enocianinas dose-dependently activate Nrf2, and such activity was correlated with catechol-containing polyphenol content. Finally, all enocianinas showed dose-dependent anti-inflammatory activity, which at the highest concentrations tested was closely related to the total polyphenol content and was explained by radical scavenging, Nrf2 activation, and other mechanisms related to the polyphenolic components.

14.
Food Chem X ; 13: 100227, 2022 Mar 30.
Article in English | MEDLINE | ID: mdl-35499030

ABSTRACT

Rice is one of the major staple foods consumed worldwide and due to the presence of γ-oryzanol (γ-OZ) it is well-recognized as functional food. For this reason, the most appropriate varieties' identification in term of content of γ-OZ has become essential in order to assess their potential nutraceutical exploitation. This study reports a suitable and versatile procedure to obtain the isotopologues of sitosteryl ferulate, one of the major γ-OZ components, namely 3-O-(3-OC2H3-feruloyl)-ß-sitosterol (14-d 3) and 3-O-(3-OC2H3-8-2H-feruloyl)-ß-sitosterol (14-d 4) for use as analytical tool.

15.
Magn Reson Med ; 88(3): 1314-1323, 2022 09.
Article in English | MEDLINE | ID: mdl-35526234

ABSTRACT

PURPOSE: To detect carnosine, anserine and homocarnosine in vivo with chemical exchange saturation transfer (CEST) at 17.2 T. METHODS: CEST MR acquisitions were performed using a CEST-linescan sequence developed in-house and optimized for carnosine detection. In vivo CEST data were collected from three different regions of interest (the lower leg muscle, the olfactory bulb and the neocortex) of eight rats. RESULTS: The CEST effect for carnosine, anserine and homocarnosine was characterized in phantoms, demonstrating the possibility to separate individual contributions by employing high spectral resolution (0.005 ppm) and low CEST saturation power (0.15 µ$$ \mu $$ T). The CEST signature of these peptides was evidenced, in vivo, in the rat brain and skeletal muscle. The presence of carnosine and anserine in the muscle was corroborated by in vivo localized spectroscopy (MRS). However, the sensitivity of MRS was insufficient for carnosine and homocarnosine detection in the brain. The absolute amounts of carnosine and derivatives in the investigated tissues were determined by liquid chromatography-electrospray ionization-tandem mass spectrometry using isotopic dilution standard methods and were in agreement with the CEST results. CONCLUSION: The robustness of the CEST-linescan approach and the favorable conditions for CEST at ultra-high magnetic field allowed the in vivo CEST MR detection of carnosine and related peptides. This approach could be useful to investigate noninvasively the (patho)-physiological roles of these molecules.


Subject(s)
Carnosine , Animals , Anserine/analysis , Brain/diagnostic imaging , Brain/metabolism , Carnosine/analysis , Carnosine/metabolism , Mass Spectrometry , Muscle, Skeletal/metabolism , Rats
16.
Int J Mol Sci ; 23(3)2022 Jan 27.
Article in English | MEDLINE | ID: mdl-35163388

ABSTRACT

Carnosine is an endogenous ß-alanyl-L-histidine dipeptide endowed with antioxidant and carbonyl scavenger properties, which is able to significantly prevent the visible signs of aging and photoaging. To investigate the mechanism of action of carnosine on human skin proteome, a 3D scaffold-free spheroid model of primary dermal fibroblasts from a 50-year-old donor was adopted in combination with quantitative proteomics for the first time. The label free proteomics approach based on high-resolution mass spectrometry, integrated with network analyses, provided a highly sensitive and selective method to describe the human dermis spheroid model during long-term culture and upon carnosine treatment. Overall, 2171 quantified proteins allowed the in-depth characterization of the 3D dermis phenotype during growth and differentiation, at 14 versus 7 days of culture. A total of 485 proteins were differentially regulated by carnosine at 7 days, an intermediate time of culture. Of the several modulated pathways, most are involved in mitochondrial functionality, such as oxidative phosphorylation, TCA cycle, extracellular matrix reorganization and apoptosis. In long-term culture, functional modules related to oxidative stress were upregulated, inducing the aging process of dermis spheroids, while carnosine treatment prevented this by the downregulation of the same functional modules. The application of quantitative proteomics, coupled to advanced and relevant in vitro scaffold free spheroids, represents a new concrete application for personalized therapies and a novel care approach.


Subject(s)
Carnosine/pharmacology , Dermis/metabolism , Models, Biological , Oxidative Stress/drug effects , Proteomics , Spheroids, Cellular/metabolism , Dermis/cytology , Humans , Middle Aged , Spheroids, Cellular/cytology
18.
Molecules ; 26(18)2021 Sep 07.
Article in English | MEDLINE | ID: mdl-34576925

ABSTRACT

A fully-detailed LC-MS qualitative profiling of red grape skin, extracted with a mixture of ethanol and water (70:30 v:v) has permitted the identification of 65 compounds which can be classified into the following chemical classes: organic and phenolic acids (14 compounds), stilbenoids (1 compound), flavanols (21 compounds), flavonols (15 compounds) and anthocyanins (14 compounds). The extraction yield obtained with water at different temperatures (100 °C, 70 °C, room temperature) was then evaluated and the overall polyphenol content indicates that EtOH:H2O solvent is the most efficient and selective for polyphenol extraction. However, by analyzing the recovery yield of each single polyphenol, we found that water extraction under heating conditions is effective (extraction yield similar or even better in respect to the binary solvent) for some polyphenolic classes, such as hydrophilic procyanidins, phenolic acids, flavonol glucosides and stilbenoids. However, according to their lipophilic character, a poor yield was found for the most lipophilic components, such as flavonol aglycones, and in general for anthocyanins. The radical scavenging activity was in accordance with the polyphenol content, and hence, much higher for the extract obtained with the binary solvent in respect to water extraction. All the tested extracts were found to have an anti-inflammatory activity in the R3/1 cell line with NF-kb reporter challenged with 0.01 µg/mL of IL-1α, in a 1 to 250 µg/mL concentration range. An intriguing result was that the EtOH:H2O extract was found to be superimposable with that obtained using water at 100 °C despite the lower polyphenol content. Taken together, the results show the bioactive potentialities of grape skin extracts and the possibility to exploit this rich industrial waste. Water extraction carried out by heating is an easy, low-cost and environmentally friendly extraction method for some polyphenol classes and may have great potential for extracts with anti-inflammatory activities.


Subject(s)
Antioxidants , Polyphenols , Vitis , Ethanol/chemistry , Solvents , Temperature
19.
Microorganisms ; 9(7)2021 Jul 13.
Article in English | MEDLINE | ID: mdl-34361928

ABSTRACT

Candida spp. are pathobionts, as they can switch from commensals to pathogens, responsible for a variety of pathological processes. Adhesion to surfaces, morphological switch and biofilm-forming ability are the recognized virulence factors promoting yeast virulence. Sessile lifestyle also favors fungal persistence and antifungal tolerance. In this study, we investigated, in vitro, the efficacy of two urinary cranberry metabolites, 5-(3',4'-dihydroxy phenyl)-γ-valerolactone (VAL) and 4-hydroxybenzoic acid (4-HBA), in inhibiting C. albicans adhesion and biofilm formation. Both the reference strain SC5314 and clinical isolates were used. We evaluated biomass reduction, by confocal microscopy and crystal violet assay, and the possible mechanisms mediating their inhibitory effects. Both VAL and 4-HBA were able to interfere with the yeast adhesion, by modulating the expression of key genes, HWP1 and ALS3. A significant dose-dependent reduction in biofilm biomass and metabolic activity was also recorded. Our data showed that the two cranberry metabolites VAL and 4-HBA could pave the way for drug development, for targeting the very early phases of biofilm formation and for preventing genitourinary Candida infections.

20.
Molecules ; 26(16)2021 Aug 23.
Article in English | MEDLINE | ID: mdl-34443686

ABSTRACT

Hyaluronic acid (HA) is a glycosaminoglycan very common in commercial products from pharmaceuticals to cosmetics due to its widespread distribution in humans and its diversified physico-chemical proprieties. Despite its extended use and preliminary evidence showing even also opposite activities to the native form, the precise cellular effects of HA at low-molecular-weight (LWM-HA) are currently unclear. The 'omics sciences currently in development offer a new and combined perspective on the cellular and organismal environment. This work aims to integrate lipidomics analyses to our previous quantitative proteomics one for a multi-omics vision of intra- and extra-cellular impact of different concentrations (0.125, 0.25, and 0.50%) of LMW-HA (20-50 kDa) on normal human dermal fibroblasts by LC-high resolution mass spectrometry (LC-HRMS). Untargeted lipidomics allowed us to identify 903 unique lipids mostly represented by triacylglycerols, ceramides, and phosphatidylcholines. According to proteomics analyses, LMW-HA 0.50% was the most effective concentration also in the lipidome rearrangement especially stimulating the synthesis of ceramides involved in skin hydration and reparation, cell signaling, and energy balance. Finally, integrative analyses showed 25 nodes covering several intra- and extra-cellular functions. The more complete comprehension of intra- and extra-cellular effects of LMW-HA here pointed out will be useful to further exploit its features and improve current formulations even though further studies on lipids biosynthesis and degradation are necessary.


Subject(s)
Dermis/cytology , Fibroblasts/metabolism , Hyaluronic Acid/pharmacology , Metabolomics , Fibroblasts/drug effects , Humans , Lipidomics , Molecular Weight , Principal Component Analysis , Protein Interaction Maps/drug effects , Proteomics
SELECTION OF CITATIONS
SEARCH DETAIL
...