Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Microbiol ; 23(8): 4807-4822, 2021 08.
Article in English | MEDLINE | ID: mdl-34309154

ABSTRACT

The physical and biological dynamics that influence phytoplankton communities in the oligotrophic ocean are complex, changing across broad temporal and spatial scales. Eukaryotic phytoplankton (e.g., diatoms), despite their relatively low abundance in oligotrophic waters, are responsible for a large component of the organic matter flux to the ocean interior. Mesoscale eddies can impact both microbial community structure and function, enhancing primary production and carbon export, but the mechanisms that underpin these dynamics are still poorly understood. Here, mesoscale eddy influences on the taxonomic diversity and expressed functional profiles of surface communities of microeukaryotes and particle-associated heterotrophic bacteria from the North Pacific Subtropical Gyre were assessed over 2 years (spring 2016 and summer 2017). The taxonomic diversity of the microeukaryotes significantly differed by eddy polarity (cyclonic versus anticyclonic) and between sampling seasons/years and was significantly correlated with the taxonomic diversity of particle-associated heterotrophic bacteria. The expressed functional profile of these taxonomically distinct microeukaryotes varied consistently as a function of eddy polarity, with cyclones having a different expression pattern than anticyclones, and between sampling seasons/years. These data suggest that mesoscale forcing, and associated changes in biogeochemistry, could drive specific physiological responses in the resident microeukaryote community, independent of species composition.


Subject(s)
Diatoms , Microbiota , Diatoms/genetics , Microbiota/genetics , Pacific Ocean , Phytoplankton/genetics , Seasons , Seawater
2.
Sci Robot ; 6(50)2021 01 13.
Article in English | MEDLINE | ID: mdl-34043577

ABSTRACT

The deep chlorophyll maximum (DCM) layer is an ecologically important feature of the open ocean. The DCM cannot be observed using aerial or satellite remote sensing; thus, in situ observations are essential. Further, understanding the responses of microbes to the environmental processes driving their metabolism and interactions requires observing in a reference frame that moves with a plankton population drifting in ocean currents, i.e., Lagrangian. Here, we report the development and application of a system of coordinated robots for studying planktonic biological communities drifting within the ocean. The presented Lagrangian system uses three coordinated autonomous robotic platforms. The focal platform consists of an autonomous underwater vehicle (AUV) fitted with a robotic water sampler. This platform localizes and drifts within a DCM community, periodically acquiring samples while continuously monitoring the local environment. The second platform is an AUV equipped with environmental sensing and acoustic tracking capabilities. This platform characterizes environmental conditions by tracking the focal platform and vertically profiling in its vicinity. The third platform is an autonomous surface vehicle equipped with satellite communications and subsea acoustic tracking capabilities. While also acoustically tracking the focal platform, this vehicle serves as a communication relay that connects the subsea robot to human operators, thereby providing situational awareness and enabling intervention if needed. Deployed in the North Pacific Ocean within the core of a cyclonic eddy, this coordinated system autonomously captured fundamental characteristics of the in situ DCM microbial community in a manner not possible previously.


Subject(s)
Robotics/instrumentation , Seawater/microbiology , Acoustics , Chlorophyll/analysis , Ecosystem , Environmental Monitoring/instrumentation , Environmental Monitoring/methods , Environmental Monitoring/statistics & numerical data , Humans , Microbiota/genetics , Microbiota/physiology , Oceanography , Oceans and Seas , Pacific Ocean , Plankton , Satellite Communications , Seawater/analysis
3.
Appl Opt ; 59(22): 6702-6716, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32749375

ABSTRACT

Cross-platform observing systems are requisite to capturing the temporal and spatial dynamics of particles in the ocean. We present simultaneous observations of bulk optical properties, including the particulate beam attenuation (cp) and backscattering (bbp) coefficients, and particle size distributions collected in the North Pacific Subtropical Gyre. Clear and coherent diel cycles are observed in all bulk and size-fractionated optical proxies for particle biomass. We show evidence linking diurnal increases in cp and bbp to daytime particle growth and division of cells, with particles <7µm driving the daily cycle of particle production and loss within the mixed layer. Flow cytometry data reveal the nitrogen-fixing cyanobacterium Crocosphaera (∼4-7µm) to be an important driver of cp at the time of sampling, whereas Prochlorococcus dynamics (∼0.5µm) were essential to reproducing temporal variability in bbp. This study is a step towards improved characterization of the particle size range represented by in situ bulk optical properties and a better understanding of the mechanisms that drive variability in particle production in the oligotrophic open ocean.


Subject(s)
Cell Division , Optical Phenomena , Phytoplankton/cytology , Phytoplankton/growth & development , Tropical Climate , Biomass , Carbon/analysis , Chlorophyll A/analysis , Fluorometry , Pacific Ocean , Time Factors
4.
Science ; 365(6457): 1040-1044, 2019 09 06.
Article in English | MEDLINE | ID: mdl-31488692

ABSTRACT

From June to August 2018, the eruption of Kilauea volcano on the island of Hawai'i injected millions of cubic meters of molten lava into the nutrient-poor waters of the North Pacific Subtropical Gyre. The lava-impacted seawater was characterized by high concentrations of metals and nutrients that stimulated phytoplankton growth, resulting in an extensive plume of chlorophyll a that was detectable by satellite. Chemical and molecular evidence revealed that this biological response hinged on unexpectedly high concentrations of nitrate, despite the negligible quantities of nitrogen in basaltic lava. We hypothesize that the high nitrate was caused by buoyant plumes of nutrient-rich deep waters created by the substantial input of lava into the ocean. This large-scale ocean fertilization was therefore a unique perturbation event that revealed how marine ecosystems respond to exogenous inputs of nutrients.


Subject(s)
Phytoplankton/growth & development , Seawater/chemistry , Volcanic Eruptions , Chlorophyll A/analysis , Chlorophyll A/metabolism , Eutrophication , Hawaii , Metals/analysis , Nitrates/analysis , Nitrogen/analysis , Pacific Ocean , Phytoplankton/metabolism , Seawater/analysis
5.
Nat Microbiol ; 2: 17118, 2017 Jul 31.
Article in English | MEDLINE | ID: mdl-28758990

ABSTRACT

The temporal dynamics of phytoplankton growth and activity have large impacts on fluxes of matter and energy, yet obtaining in situ metabolic measurements of sufficient resolution for even dominant microorganisms remains a considerable challenge. We performed Lagrangian diel sampling with synoptic measurements of population abundances, dinitrogen (N2) fixation, mortality, productivity, export and transcription in a bloom of Crocosphaera over eight days in the North Pacific Subtropical Gyre (NPSG). Quantitative transcriptomic analyses revealed clear diel oscillations in transcript abundances for 34% of Crocosphaera genes identified, reflecting a systematic progression of gene expression in diverse metabolic pathways. Significant time-lagged correspondence was evident between nifH transcript abundance and maximal N2 fixation, as well as sepF transcript abundance and cell division, demonstrating the utility of transcriptomics to predict the occurrence and timing of physiological and biogeochemical processes in natural populations. Indirect estimates of carbon fixation by Crocosphaera were equivalent to 11% of net community production, suggesting that under bloom conditions this diazotroph has a considerable impact on the wider carbon cycle. Our cross-scale synthesis of molecular, population and community-wide data underscores the tightly coordinated in situ metabolism of the keystone N2-fixing cyanobacterium Crocosphaera, as well as the broader ecosystem-wide implications of its activities.


Subject(s)
Cyanobacteria/growth & development , Cyanobacteria/genetics , Gene Expression Regulation, Bacterial , Nitrogen Fixation/genetics , Nitrogen/metabolism , Seawater/microbiology , Bacterial Proteins/genetics , Carbon/metabolism , Carbon Cycle , Cyanobacteria/metabolism , Gene Expression Profiling , Metabolic Networks and Pathways/genetics , Pacific Ocean
6.
J Geophys Res Oceans ; 120(11): 7381-7399, 2015 Nov.
Article in English | MEDLINE | ID: mdl-27812434

ABSTRACT

The particle size distribution (PSD) is a critical aspect of the oceanic ecosystem. Local variability in the PSD can be indicative of shifts in microbial community structure and reveal patterns in cell growth and loss. The PSD also plays a central role in particle export by influencing settling speed. Satellite-based models of primary productivity (PP) often rely on aspects of photophysiology that are directly related to community size structure. In an effort to better understand how variability in particle size relates to PP in an oligotrophic ecosystem, we collected laser diffraction-based depth profiles of the PSD and pigment-based classifications of phytoplankton functional types (PFTs) on an approximately monthly basis at the Hawaii Ocean Time-series Station ALOHA, in the North Pacific subtropical gyre. We found a relatively stable PSD in the upper water column. However, clear seasonality is apparent in the vertical distribution of distinct particle size classes. Neither laser diffraction-based estimations of relative particle size nor pigment-based PFTs was found to be significantly related to the rate of 14C-based PP in the light-saturated upper euphotic zone. This finding indicates that satellite retrievals of particle size, based on particle scattering or ocean color would not improve parameterizations of present-day bio-optical PP models for this region. However, at depths of 100-125 m where irradiance exerts strong control on PP, we do observe a significant linear relationship between PP and the estimated carbon content of 2-20 µm particles.

SELECTION OF CITATIONS
SEARCH DETAIL
...