Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Protein Expr Purif ; 146: 78-84, 2018 06.
Article in English | MEDLINE | ID: mdl-29360581

ABSTRACT

The PR-1 proteins (pathogenesis-related protein 1) are involved in plant defense mechanisms against various pathogens. The genome of cacao (Theobroma cacao) encodes 14 PR-1 proteins, named TcPR-1a to TcPR-1n. Two of them, TcPR-1f and TcPR-1g, have a C-terminal expansion with high similarity to protein kinase domains, suggesting a receptor-like kinase (RLK) protein architecture. Moreover, TcPR-1g is highly expressed during cacao response to Witches' Broom Disease, caused by the fungus Moniliopthora perniciosa. Here we describe a structural genomics approach to clone, express and purify the kinase domains of TcPR-1f and TcPR-1g. Escherichia coli BL21(DE3)-R3 cells were used for protein expression and co-expression of Lambda Protein Phosphatase was critical for successfully obtaining soluble recombinant protein. We expect that the ability to express and purify the kinase domains of TcPR-1f and TcPR-1g will further our understanding of the role these proteins play during cacao defense response.


Subject(s)
Cacao/genetics , Cloning, Molecular/methods , Plant Proteins/genetics , Amino Acid Sequence , Cacao/chemistry , Escherichia coli/genetics , Plant Diseases/genetics , Plant Diseases/microbiology , Plant Proteins/chemistry , Protein Domains , Protein Kinases/chemistry , Protein Kinases/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Sequence Alignment
2.
Biochem Biophys Res Commun ; 466(4): 629-36, 2015 Oct 30.
Article in English | MEDLINE | ID: mdl-26367180

ABSTRACT

Thaumatin-like proteins (TLPs) are found in diverse eukaryotes. Plant TLPs, known as Pathogenicity Related Protein (PR-5), are considered fungal inhibitors. However, genes encoding TLPs are frequently found in fungal genomes. In this work, we have identified that Moniliophthora perniciosa, a basidiomycete pathogen that causes the Witches' Broom Disease (WBD) of cacao, presents thirteen putative TLPs from which four are expressed during WBD progression. One of them is similar to small TLPs, which are present in phytopathogenic basidiomycete, such as wheat stem rust fungus Puccinia graminis. Fungi genomes annotation and phylogenetic data revealed a larger number of TLPs in basidiomycetes when comparing with ascomycetes, suggesting that these proteins could be involved in specific traits of mushroom-forming species. Based on the present data, we discuss the contribution of TLPs in the combat against fungal competitors and hypothesize a role of these proteins in M. perniciosa pathogenicity.


Subject(s)
Agaricales/genetics , Agaricales/pathogenicity , Cacao/microbiology , Fungal Proteins/genetics , Genome, Fungal , Plant Diseases/microbiology , Amino Acid Sequence , Fungal Proteins/physiology , Gene Expression , Molecular Sequence Data , Multigene Family , Phylogeny , RNA, Fungal/genetics , Sequence Homology, Amino Acid , Virulence/genetics , Virulence/physiology
3.
BMC Genet ; 13: 50, 2012 Jun 27.
Article in English | MEDLINE | ID: mdl-22738188

ABSTRACT

BACKGROUND: Common bean (Phaseolus vulgaris L.) is the most important grain legume for human diet worldwide and the angular leaf spot (ALS) is one of the most devastating diseases of this crop, leading to yield losses as high as 80%. In an attempt to breed resistant cultivars, it is important to first understand the inheritance mode of resistance and to develop tools that could be used in assisted breeding. Therefore, the aim of this study was to identify quantitative trait loci (QTL) controlling resistance to ALS under natural infection conditions in the field and under inoculated conditions in the greenhouse. RESULTS: QTL analyses were made using phenotypic data from 346 recombinant inbreed lines from the IAC-UNAxCAL 143 cross, gathered in three experiments, two of which were conducted in the field in different seasons and one in the greenhouse. Joint composite interval mapping analysis of QTLxenvironment interaction was performed. In all, seven QTLs were mapped on five linkage groups. Most of them, with the exception of two, were significant in all experiments. Among these, ALS10.1DG,UC presented major effects (R2 between 16%-22%). This QTL was found linked to the GATS11b marker of linkage group B10, which was consistently amplified across a set of common bean lines and was associated with the resistance. Four new QTLs were identified. Between them the ALS5.2 showed an important effect (9.4%) under inoculated conditions in the greenhouse. ALS4.2 was another major QTL, under natural infection in the field, explaining 10.8% of the variability for resistance reaction. The other QTLs showed minor effects on resistance. CONCLUSIONS: The results indicated a quantitative inheritance pattern of ALS resistance in the common bean line CAL 143. QTL x environment interactions were observed. Moreover, the major QTL identified on linkage group B10 could be important for bean breeding, as it was stable in all the environments. Thereby, the GATS11b marker is a potential tool for marker assisted selection for ALS resistance.


Subject(s)
Chromosome Mapping/methods , Disease Resistance/genetics , Phaseolus/genetics , Plant Diseases/genetics , Quantitative Trait Loci , Crosses, Genetic , Gene-Environment Interaction , Genetic Linkage , Plant Leaves/genetics
SELECTION OF CITATIONS
SEARCH DETAIL