Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 14(28): 19701-19706, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38903677

ABSTRACT

Threofuranosyl nucleic acid (TNA), an artificial genetic polymer known for its nuclease resistance and acid stability, has grown in popularity as a genetically-encoded material for applications in synthetic biology and biomedicine. TNA oligonucleotide synthesis requires enzymatic or solid phase synthesis pathways that rely on monomer building blocks that are not commercially available and can only be obtained by chemical synthesis. Here we present a synthetic route to 7-deaza-7-modified tGTP and phosphoramidite analogs that is operationally simpler than our previously described strategy. The new methodology offers an HPLC-free route to tGTP analogs that are recognized by engineered TNA polymerases and can be incorporated with continued TNA synthesis.

2.
Nucleic Acids Res ; 51(18): 9542-9551, 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37650628

ABSTRACT

Xeno-nucleic acids (XNAs) have gained significant interest as synthetic genetic polymers for practical applications in biomedicine, but very little is known about their biophysical properties. Here, we compare the stability and mechanism of acid-mediated degradation of α-l-threose nucleic acid (TNA) to that of natural DNA and RNA. Under acidic conditions and elevated temperature (pH 3.3 at 90°C), TNA was found to be significantly more resistant to acid-mediated degradation than DNA and RNA. Mechanistic insights gained by reverse-phase HPLC and mass spectrometry indicate that the resilience of TNA toward low pH environments is due to a slower rate of depurination caused by induction of the 2'-phosphodiester linkage. Similar results observed for 2',5'-linked DNA and 2'-O-methoxy-RNA implicate the position of the phosphodiester group as a key factor in destabilizing the formation of the oxocarbenium intermediate responsible for depurination and strand cleavage of TNA. Biochemical analysis indicates that strand cleavage occurs by ß-elimination of the 2'-phosphodiester linkage to produce an upstream cleavage product with a 2'-threose sugar and a downstream cleavage product with a 3' terminal phosphate. This work highlights the unique physicochemical properties available to evolvable non-natural genetic polymers currently in development for biomedical applications.

3.
Org Lett ; 23(15): 5969-5972, 2021 08 06.
Article in English | MEDLINE | ID: mdl-34292756

ABSTRACT

Here, we report a de novo metal-catalyzed approach toward the stereoselective glycosidic bond formation in saccharomicin. The signature step is highlighted by the Pd-catalyzed asymmetric coupling of ene-alkoxyallenes and highly functionalized alcohol substrates. The reaction showed high chemo-, regio-, and ligand-driven diastereoselectivity. In combination with the ring-closing metathesis and late-stage functionalization, this method led to highly efficient synthesis of saccharosamine-rhamnose and rhamnose-fucose fragments.


Subject(s)
Fucose/chemical synthesis , Hexosamines/chemical synthesis , Rhamnose/chemistry , Catalysis , Fucose/chemistry , Hexosamines/chemistry , Molecular Structure , Palladium/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL