Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Viruses ; 16(4)2024 03 26.
Article in English | MEDLINE | ID: mdl-38675848

ABSTRACT

Rapid and early detection of infectious diseases in pigs is important, especially for the implementation of control measures in suspected cases of African swine fever (ASF), as an effective and safe vaccine is not yet available in most of the affected countries. Additionally, analysis for swine influenza is of significance due to its high morbidity rate (up to 100%) despite a lower mortality rate compared to ASF. The wide distribution of swine influenza A virus (SwIAV) across various countries, the emergence of constantly new recombinant strains, and the danger of human infection underscore the need for rapid and accurate diagnosis. Several diagnostic approaches and commercial methods should be applied depending on the scenario, type of sample and the objective of the studies being implemented. At the early diagnosis of an outbreak, virus genome detection using a variety of PCR assays proves to be the most sensitive and specific technique. As the disease evolves, serology gains diagnostic value, as specific antibodies appear later in the course of the disease (after 7-10 days post-infection (DPI) for ASF and between 10-21 DPI for SwIAV). The ongoing development of commercial kits with enhanced sensitivity and specificity is evident. This review aims to analyse recent advances and current commercial kits utilised for the diagnosis of ASF and SwIAV.


Subject(s)
African Swine Fever , Influenza A virus , Orthomyxoviridae Infections , Reagent Kits, Diagnostic , Sensitivity and Specificity , Animals , African Swine Fever/diagnosis , African Swine Fever/virology , African Swine Fever/epidemiology , Swine , Orthomyxoviridae Infections/diagnosis , Orthomyxoviridae Infections/veterinary , Orthomyxoviridae Infections/virology , Influenza A virus/genetics , Influenza A virus/isolation & purification , African Swine Fever Virus/genetics , African Swine Fever Virus/isolation & purification , Clinical Laboratory Techniques/methods , Swine Diseases/diagnosis , Swine Diseases/virology , Molecular Diagnostic Techniques/methods
2.
Front Cell Infect Microbiol ; 13: 1163569, 2023.
Article in English | MEDLINE | ID: mdl-38125905

ABSTRACT

The African swine fever virus (ASFV) is strongly dependent on an intact endocytic pathway and a certain cellular membrane remodeling for infection, possibly regulated by the endosomal sorting complexes required for transport (ESCRT). The ESCRT machinery is mainly involved in the coordination of membrane dynamics; hence, several viruses exploit this complex and its accessory proteins VPS4 and ALIX for their own benefit. In this work, we found that shRNA-mediated knockdown of VPS4A decreased ASFV replication and viral titers, and this silencing resulted in an enhanced expression of ESCRT-0 component HRS. ASFV infection slightly increased HRS expression but not under VPS4A depletion conditions. Interestingly, VPS4A silencing did not have an impact on ALIX expression, which was significantly overexpressed upon ASFV infection. Further analysis revealed that ALIX silencing impaired ASFV infection at late stages of the viral cycle, including replication and viral production. In addition to ESCRT, the accessory protein ALIX is involved in endosomal membrane dynamics in a lysobisphosphatydic acid (LBPA) and Ca2+-dependent manner, which is relevant for intraluminal vesicle (ILV) biogenesis and endosomal homeostasis. Moreover, LBPA interacts with NPC2 and/or ALIX to regulate cellular cholesterol traffic, and would affect ASFV infection. Thus, we show that LBPA blocking impacted ASFV infection at both early and late infection, suggesting a function for this unconventional phospholipid in the ASFV viral cycle. Here, we found for the first time that silencing of VPS4A and ALIX affects the infection later on, and blocking LBPA function reduces ASFV infectivity at early and later stages of the viral cycle, while ALIX was overexpressed upon infection. These data suggested the relevance of ESCRT-related proteins in ASFV infection.


Subject(s)
African Swine Fever Virus , Endosomal Sorting Complexes Required for Transport , Swine , Animals , Endosomal Sorting Complexes Required for Transport/genetics , Endosomal Sorting Complexes Required for Transport/metabolism , African Swine Fever Virus/genetics , Calcium-Binding Proteins/metabolism , Endosomes/metabolism , Endocytosis
3.
Viruses ; 15(5)2023 04 29.
Article in English | MEDLINE | ID: mdl-37243184

ABSTRACT

African swine fever virus (ASFV) encodes more than 150 proteins, most of them of unknown function. We used a high-throughput proteomic analysis to elucidate the interactome of four ASFV proteins, which potentially mediate a critical step of the infection cycle, the fusion and endosomal exit of the virions. Using affinity purification and mass spectrometry, we were able to identify potential interacting partners for those ASFV proteins P34, E199L, MGF360-15R and E248R. Representative molecular pathways for these proteins were intracellular and Golgi vesicle transport, endoplasmic reticulum organization, lipid biosynthesis, and cholesterol metabolism. Rab geranyl geranylation emerged as a significant hit, and also Rab proteins, which are crucial regulators of the endocytic pathway and interactors of both p34 and E199L. Rab proteins co-ordinate a tight regulation of the endocytic pathway that is necessary for ASFV infection. Moreover, several interactors were proteins involved in the molecular exchange at ER membrane contacts. These ASFV fusion proteins shared interacting partners, suggesting potential common functions. Membrane trafficking and lipid metabolism were important categories, as we found significant interactions with several enzymes of the lipid metabolism. These targets were confirmed using specific inhibitors with antiviral effect in cell lines and macrophages.


Subject(s)
African Swine Fever Virus , African Swine Fever , Swine , Animals , African Swine Fever Virus/physiology , Viral Fusion Proteins/metabolism , Proteomics , Cell Line
4.
Int J Mol Sci ; 23(7)2022 Mar 22.
Article in English | MEDLINE | ID: mdl-35408808

ABSTRACT

Microtubule targeting agents (MTAs) have been exploited mainly as anti-cancer drugs because of their impact on cellular division and angiogenesis. Additionally, microtubules (MTs) are key structures for intracellular transport, which is frequently hijacked during viral infection. We have analyzed the antiviral activity of clinically used MTAs in the infection of DNA and RNA viruses, including SARS-CoV-2, to find that MT destabilizer agents show a higher impact than stabilizers in the viral infections tested, and FDA-approved anti-helminthic benzimidazoles were among the most active compounds. In order to understand the reasons for the observed antiviral activity, we studied the impact of these compounds in motor proteins-mediated intracellular transport. To do so, we used labeled peptide tools, finding that clinically available MTAs impaired the movement linked to MT motors in living cells. However, their effect on viral infection lacked a clear correlation to their effect in motor-mediated transport, denoting the complex use of the cytoskeleton by viruses. Finally, we further delved into the molecular mechanism of action of Mebendazole by combining biochemical and structural studies to obtain crystallographic high-resolution information of the Mebendazole-tubulin complex, which provided insights into the mechanisms of differential toxicity between helminths and mammalians.


Subject(s)
COVID-19 Drug Treatment , Mebendazole , Animals , Antiviral Agents/pharmacology , Mammals , Mebendazole/pharmacology , Microtubules , SARS-CoV-2 , Tubulin
5.
PLoS Pathog ; 18(1): e1009784, 2022 01.
Article in English | MEDLINE | ID: mdl-35081156

ABSTRACT

African swine fever virus (ASFV) infectious cycle starts with the viral adsorption and entry into the host cell. Then, the virus is internalized via clathrin/dynamin mediated endocytosis and macropinocytosis. Similar to other viruses, ASF virion is then internalized and incorporated into the endocytic pathway. While the endosomal maturation entails luminal acidification, the decrease in pH acts on the multilayer structure of the virion dissolving the outer capsid. Upon decapsidation, the inner viral membrane is exposed to interact with the limiting membrane of the late endosome for fusion. Viral fusion is then necessary for the egress of incoming virions from endosomes into the cytoplasm, however this remains an intriguing and yet essential process for infection, specifically for the egress of viral nucleic acid into the cytoplasm for replication. ASFV proteins E248R and E199L, located at the exposed inner viral membrane, might be implicated in the fusion step. An interaction between these viral proteins and cellular endosomal proteins such as the Niemann-Pick C type 1 (NPC1) and lysosomal membrane proteins (Lamp-1 and -2) was shown. Furthermore, the silencing of these proteins impaired ASFV infection. It was also observed that NPC1 knock-out cells using CRISPR jeopardized ASFV infection and that the progression and endosomal exit of viral cores was arrested within endosomes at viral entry. These results suggest that the interactions of ASFV proteins with some endosomal proteins might be important for the membrane fusion step. In addition to this, reductions on ASFV infectivity and replication in NPC1 KO cells were accompanied by fewer and smaller viral factories. Our findings pave the way to understanding the role of proteins of the endosomal membrane in ASFV infection.


Subject(s)
African Swine Fever Virus/pathogenicity , African Swine Fever/virology , Endosomes/virology , Host-Pathogen Interactions/physiology , Viral Proteins/metabolism , African Swine Fever Virus/metabolism , Animals , Chlorocebus aethiops , Endosomes/metabolism , HEK293 Cells , Humans , Swine , Vero Cells
6.
Antiviral Res ; 194: 105167, 2021 10.
Article in English | MEDLINE | ID: mdl-34450201

ABSTRACT

Niemann-Pick type C1 (NPC1) receptor is an endosomal membrane protein that regulates intracellular cholesterol traffic. This protein has been shown to play an important role for several viruses. It has been reported that SARS-CoV-2 enters the cell through plasma membrane fusion and/or endosomal entry upon availability of proteases. However, the whole process is not fully understood yet and additional viral/host factors might be required for viral fusion and subsequent viral replication. Here, we report a novel interaction between the SARS-CoV-2 nucleoprotein (N) and the cholesterol transporter NPC1. Furthermore, we have found that some compounds reported to interact with NPC1, carbazole SC816 and sulfides SC198 and SC073, were able to reduce SARS-CoV-2 viral infection with a good selectivity index in human cell infection models. These findings suggest the importance of NPC1 for SARS-CoV-2 viral infection and a new possible potential therapeutic target to fight against COVID-19.


Subject(s)
Biological Transport , COVID-19 Drug Treatment , Endosomes/virology , Niemann-Pick C1 Protein/analysis , SARS-CoV-2/physiology , Animals , Carbazoles/pharmacology , Chlorocebus aethiops , Endosomes/chemistry , HEK293 Cells , Humans , Intracellular Signaling Peptides and Proteins , Membrane Fusion , Vero Cells , Virus Replication
7.
Viruses ; 13(6)2021 06 17.
Article in English | MEDLINE | ID: mdl-34204411

ABSTRACT

African swine fever virus (ASFV) is an acute and persistent swine virus with a high economic burden that encodes multiple genes to evade host immune response. In this work, we have revealed that early viral protein UBCv1, the only known conjugating enzyme encoded by a virus, modulates innate immune and inflammatory signaling. Transient overexpression of UBCv1 impaired activation of NF-κB and AP-1 transcription factors induced by several agonists of these pathways. In contrast, activation of IRF3 and ISRE signaling upon stimulation with TRIFΔRIP, cGAS/STING or RIG-I-CARD remained unaltered. Experiments aimed at mapping UBCv1 inhibitory activity indicated that this viral protein acts upstream or at the level step of IKKß. In agreement with this, UBCv1 was able to block p65 nuclear translocation upon cytokine stimulation, a key event in NF-ĸB signaling. Additionally, A549 stably transduced for UBCv1 showed a significant decrease in the levels of NF-ĸB dependent genes. Interestingly, despite the well-defined capacity of UBCv1 to conjugate ubiquitin chains, a mutant disabled for ubiquitylation activity retained similar immunomodulatory activity as the wild-type enzyme, suggesting that the two functions are segregated. Altogether these data suggest that ASFV UBCv1 manipulates the innate immune response targeting the NF-κB and AP-1 pathways and opens new questions about the multifunctionality of this enzyme.


Subject(s)
African Swine Fever Virus/enzymology , Immunity, Innate , Immunomodulation , NF-kappa B/genetics , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Conjugating Enzymes/immunology , A549 Cells , African Swine Fever Virus/immunology , Animals , HEK293 Cells , Humans , Interferon Type I/immunology , NF-kappa B/immunology , NF-kappa B/metabolism , Signal Transduction/immunology , Swine , Ubiquitin/metabolism , Ubiquitin-Conjugating Enzymes/metabolism
8.
J Med Chem ; 63(21): 12359-12386, 2020 11 12.
Article in English | MEDLINE | ID: mdl-32511912

ABSTRACT

Currently, humans are immersed in a pandemic caused by the emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which threatens public health worldwide. To date, no drug or vaccine has been approved to treat the severe disease caused by this coronavirus, COVID-19. In this paper, we will focus on the main virus-based and host-based targets that can guide efforts in medicinal chemistry to discover new drugs for this devastating disease. In principle, all CoV enzymes and proteins involved in viral replication and the control of host cellular machineries are potentially druggable targets in the search for therapeutic options for SARS-CoV-2. This Perspective provides an overview of the main targets from a structural point of view, together with reported therapeutic compounds with activity against SARS-CoV-2 and/or other CoVs. Also, the role of innate immune response to coronavirus infection and the related therapeutic options will be presented.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , SARS-CoV-2/drug effects , Amino Acid Sequence , Animals , Drug Repositioning , Enzyme Inhibitors/therapeutic use , Humans , Immunity, Innate/drug effects
9.
Front Microbiol ; 11: 622907, 2020.
Article in English | MEDLINE | ID: mdl-33384682

ABSTRACT

African Swine Fever virus (ASFV) causes one of the most relevant emerging diseases affecting swine, now extended through three continents. The virus has a large coding capacity to deploy an arsenal of molecules antagonizing the host functions. In the present work, we have studied the only known E2 viral-conjugating enzyme, UBCv1 that is encoded by the I215L gene of ASFV. UBCv1 was expressed as an early expression protein that accumulates throughout the course of infection. This versatile protein, bound several types of polyubiquitin chains and its catalytic domain was required for enzymatic activity. High throughput mass spectrometry analysis in combination with a screening of an alveolar macrophage library was used to identify and characterize novel UBCv1-host interactors. The analysis revealed interaction with the 40S ribosomal protein RPS23, the cap-dependent translation machinery initiation factor eIF4E, and the E3 ubiquitin ligase Cullin 4B. Our data show that during ASFV infection, UBCv1 was able to bind to eIF4E, independent from the cap-dependent complex. Our results provide novel insights into the function of the viral UBCv1 in hijacking cellular components that impact the mTORC signaling pathway, the regulation of the host translation machinery, and the cellular protein expression during the ASFV lifecycle.

10.
PLoS One ; 12(12): e0189741, 2017.
Article in English | MEDLINE | ID: mdl-29244872

ABSTRACT

Several viruses manipulate the ubiquitin-proteasome system (UPS) to initiate a productive infection. Determined viral proteins are able to change the host's ubiquitin machinery and some viruses even encode their own ubiquitinating or deubiquitinating enzymes. African swine fever virus (ASFV) encodes a gene homologous to the E2 ubiquitin conjugating (UBC) enzyme. The viral ubiquitin-conjugating enzyme (UBCv1) is expressed throughout ASFV infection and accumulates at late times post infection. UBCv is also present in the viral particle suggesting that the ubiquitin-proteasome pathway could play an important role at early ASFV infection. We determined that inhibition of the final stage of the ubiquitin-proteasome pathway blocked a post-internalization step in ASFV replication in Vero cells. Under proteasome inhibition, ASF viral genome replication, late gene expression and viral production were severely reduced. Also, ASFV enhanced proteasome activity at late times and the accumulation of polyubiquitinated proteins surrounding viral factories. Core-associated and/or viral proteins involved in DNA replication may be targets for the ubiquitin-proteasome pathway that could possibly assist virus uncoating at final core breakdown and viral DNA release. At later steps, polyubiquitinated proteins at viral factories could exert regulatory roles in cell signaling.


Subject(s)
African Swine Fever Virus/genetics , African Swine Fever/genetics , Ubiquitin-Conjugating Enzymes/genetics , Viral Proteins/genetics , Virus Replication/genetics , African Swine Fever/virology , African Swine Fever Virus/pathogenicity , Animals , Chlorocebus aethiops , DNA Replication/genetics , DNA, Viral/genetics , Genome, Viral , Proteasome Endopeptidase Complex/genetics , Swine/virology , Ubiquitin/genetics , Vero Cells , Virion/genetics
11.
Viruses ; 9(6)2017 06 01.
Article in English | MEDLINE | ID: mdl-28587154

ABSTRACT

African swine fever virus (ASFV) infection causes endosomal reorganization. Here, we show that the virus causes endosomal congregation close to the nucleus as the infection progresses, which is necessary to build a compact viral replication organelle. ASFV enters the cell by the endosomal pathway and reaches multivesicular late endosomes. Upon uncoating and fusion, the virus should exit to the cytosol to start replication. ASFV remodels endosomal traffic and redistributes endosomal membranes to the viral replication site. Virus replication also depends on endosomal membrane phosphoinositides (PtdIns) synthesized by PIKfyve. Endosomes could act as platforms providing membranes and PtdIns, necessary for ASFV replication. Our study has revealed that ASFV reorganizes endosome dynamics, in order to ensure a productive infection.


Subject(s)
African Swine Fever Virus/physiology , Endosomes/metabolism , Intracellular Membranes/metabolism , Virus Replication , Animals , Chlorocebus aethiops , Phosphatidylinositols/metabolism , Vero Cells
12.
PLoS One ; 11(4): e0154366, 2016.
Article in English | MEDLINE | ID: mdl-27116236

ABSTRACT

The interferon-induced transmembrane (IFITM) protein family is a group of antiviral restriction factors that impair flexibility and inhibit membrane fusion at the plasma or the endosomal membrane, restricting viral progression at entry. While IFITMs are widely known to inhibit several single-stranded RNA viruses, there are limited reports available regarding their effect in double-stranded DNA viruses. In this work, we have analyzed a possible antiviral function of IFITMs against a double stranded DNA virus, the African swine fever virus (ASFV). Infection with cell-adapted ASFV isolate Ba71V is IFN sensitive and it induces IFITMs expression. Interestingly, high levels of IFITMs caused a collapse of the endosomal pathway to the perinuclear area. Given that ASFV entry is strongly dependent on endocytosis, we investigated whether IFITM expression could impair viral infection. Expression of IFITM1, 2 and 3 reduced virus infectivity in Vero cells, with IFITM2 and IFITM3 having an impact on viral entry/uncoating. The role of IFITM2 in the inhibition of ASFV in Vero cells could be related to impaired endocytosis-mediated viral entry and alterations in the cholesterol efflux, suggesting that IFITM2 is acting at the late endosome, preventing the decapsidation stage of ASFV.


Subject(s)
African Swine Fever Virus/pathogenicity , Antigens, Differentiation/metabolism , Interferons/metabolism , Membrane Proteins/metabolism , Virus Internalization , Animals , Cell Membrane/metabolism , Chlorocebus aethiops , Cholesterol/metabolism , Endocytosis , Endosomes/metabolism , HEK293 Cells , Humans , Microscopy, Fluorescence , RNA Viruses/metabolism , RNA, Double-Stranded , Vero Cells
13.
J Virol ; 90(3): 1534-43, 2016 02 01.
Article in English | MEDLINE | ID: mdl-26608317

ABSTRACT

UNLABELLED: African swine fever virus (ASFV) is a major threat for porcine production that has been slowly spreading in Eastern Europe since its first appearance in the Caucasus in 2007. ASFV enters the cell by endocytosis and gains access to the cytosol to start replication from late endosomes and multivesicular bodies. Cholesterol associated with low-density lipoproteins entering the cell by endocytosis also follows a trafficking pathway similar to that of ASFV. Here we show that cholesterol plays an essential role in the establishment of infection as the virus traffics through the endocytic pathway. In contrast to the case for other DNA viruses, such as vaccinia virus or adenovirus 5, cholesterol efflux from endosomes is required for ASFV release/entry to the cytosol. Accumulation of cholesterol in endosomes impairs fusion, resulting in retention of virions inside endosomes. ASFV also remodels intracellular cholesterol by increasing its cellular uptake and redistributes free cholesterol to viral replication sites. Our analysis reveals that ASFV manipulates cholesterol dynamics to ensure an appropriate lipid flux to establish productive infection. IMPORTANCE: Since its appearance in the Caucasus in 2007, African swine fever (ASF) has been spreading westwards to neighboring European countries, threatening porcine production. Due to the lack of an effective vaccine, ASF control relies on early diagnosis and widespread culling of infected animals. We investigated early stages of ASFV infection to identify potential cellular targets for therapeutic intervention against ASF. The virus enters the cell by endocytosis, and soon thereafter, viral decapsidation occurs in the acid pH of late endosomes. We found that ASFV infection requires and reorganizes the cellular lipid cholesterol. ASFV requires cholesterol to exit the endosome to gain access to the cytoplasm to establish productive replication. Our results indicate that there is a differential requirement for cholesterol efflux for vaccinia virus or adenovirus 5 compared to ASFV.


Subject(s)
African Swine Fever Virus/physiology , Cholesterol/metabolism , Endosomes/metabolism , Endosomes/virology , Virus Internalization , Animals , Chlorocebus aethiops , Hydrogen-Ion Concentration , Metabolic Flux Analysis , Vero Cells
14.
Virus Res ; 209: 118-27, 2015 Nov 02.
Article in English | MEDLINE | ID: mdl-26057710

ABSTRACT

Viruses are strict intracellular pathogens that require the cellular environment to complete a successful infection. Among them, African swine fever virus (ASFV) is an evolutionary ancient DNA virus, endemic in Africa, which is nowadays causing an emergent disease in Europe with a potential high economic impact in the pig industry. It is well known that host-cell components are critical crossroads mapping the virus path for a productive infection, some of them at the endocytic pathway. Considering that ASFV infectious cycle strongly relies in several factors from the host cell, the study of virus-host interactions remains crucial as they will reveal the obstacles, routes and tracks, hints and the target waypoint in the virus journey to destination.


Subject(s)
African Swine Fever Virus/physiology , Host-Pathogen Interactions , Virus Replication , Animals , Swine
15.
Viruses ; 7(4): 1823-31, 2015 Apr 08.
Article in English | MEDLINE | ID: mdl-25856634

ABSTRACT

African swine fever virus (ASFV) is a double-stranded DNA virus causing a hemorrhagic fever disease with high mortality rates and severe economic losses in pigs worldwide. ASFV replicates in perinuclear sites called viral factories (VFs) that are morphologically similar to cellular aggresomes. This fact raises the possibility that both VFs and aggresomes may be the same structure. However, little is known about the process involved in the formation of these viral replication platforms. In order to expand our knowledge on the assembly of ASFV replication sites, we have analyzed the involvement of both canonical aggresome pathways in the formation of ASFV VFs: HDAC6 and BAG3. HDAC6 interacts with a component of the dynein motor complex (dynactin/p150Glued) and ubiquitinated proteins, transporting them to the microtubule-organizing center (MTOC) and leading to aggresome formation, while BAG3 is mediating the recruitment of non-ubiquitinated proteins through a similar mechanism. Tubacin-mediated HDAC6 inhibition and silencing of BAG3 pathways, individually or simultaneously, did not prevent ASFV VF formation. These findings show that HDAC6 and Bag3 are not required for VFs formation suggesting that aggresomes and VFs are not the same structures. However, alternative unexplored pathways may be involved in the formation of aggresomes.


Subject(s)
African Swine Fever Virus/physiology , Host-Pathogen Interactions , Virus Replication , Adaptor Proteins, Signal Transducing/metabolism , Animals , Cell Line , Histone Deacetylases/metabolism , Swine
16.
Virus Res ; 200: 45-55, 2015 Mar 16.
Article in English | MEDLINE | ID: mdl-25662020

ABSTRACT

The main cellular target for African swine fever virus (ASFV) is the porcine macrophage. However, existing data about the early phases of infection were previously characterized in non-leukocyte cells such as Vero cells. Here, we report that ASFV enters the natural host cell using dynamin-dependent and clathrin-mediated endocytosis. This pathway is strongly pH-dependent during the first steps of infection in porcine macrophages. We investigated the effect of drugs inhibiting several endocytic pathways in macrophages and compared ASFV with vaccinia virus (VV), which apparently involves different entry pathways. The presence of cholesterol in cellular membranes was found to be essential for a productive ASFV infection while actin-dependent endocytosis and the participation of phosphoinositide-3-kinase (PI3K) activity were other cellular factors required in the process of viral entry. These findings improved our understanding of the ASFV interactions with macrophages that allow for successful viral replication.


Subject(s)
African Swine Fever Virus/physiology , Cholesterol/metabolism , Clathrin/metabolism , Endocytosis , Macrophages/virology , African Swine Fever/enzymology , African Swine Fever/metabolism , African Swine Fever/physiopathology , African Swine Fever/virology , African Swine Fever Virus/genetics , Animals , Chlorocebus aethiops , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Swine , Vero Cells , Virus Internalization
SELECTION OF CITATIONS
SEARCH DETAIL
...