Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 153
Filter
1.
Anal Chem ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38812282

ABSTRACT

Ion mobility mass spectrometry (IM-MS) measures the mass, size, and shape of ions in the same experiment, and structural information is provided via collision cross-section (CCS) values. The majority of commercially available IM-MS instrumentation relies on the use of CCS calibrants, and here, we present data from a family of poly(l-lysine) dendrimers and explore their suitability for this purpose. In order to test these compounds, we employed three different IM-MS platforms (Agilent 6560 IM-QToF, Waters Synapt G2, and a home-built variable temperature drift tube IM-MS) and used them to investigate six different generations of dendrimers in two buffer gases (helium and nitrogen). Each molecule gives a highly discrete CCS distribution suggestive of single conformers for each m/z value. The DTCCSN2 values of this series of molecules (molecular weight: 330-16,214 Da) range from 182 to 2941 Å2, which spans the CCS range that would be found by many synthetic molecules including supramolecular compounds and many biopolymers. The CCS values for each charge state were highly reproducible in day-to-day analysis on each instrument, although we found small variations in the absolute CCS values between instruments. The rigidity of each dendrimer was probed using collisionally activated and high-temperature IM-MS experiments, where no evidence for a significant CCS change ensued. Taken together, this data indicates that these polymers are candidates for CCS calibration and could also help to reconcile differences found in CCS measurements on different instrument geometries.

2.
Biochem J ; 481(11): 669-682, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38713013

ABSTRACT

The fundamental biology of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleocapsid protein (Ncap), its use in diagnostic assays and its potential application as a vaccine component have received considerable attention since the outbreak of the Covid19 pandemic in late 2019. Here we report the scalable expression and purification of soluble, immunologically active, SARS-CoV-2 Ncap in Escherichia coli. Codon-optimised synthetic genes encoding the original Ncap sequence and four common variants with an N-terminal 6His affinity tag (sequence MHHHHHHG) were cloned into an inducible expression vector carrying a regulated bacteriophage T5 synthetic promoter controlled by lac operator binding sites. The constructs were used to express Ncap proteins and protocols developed which allow efficient production of purified Ncap with yields of over 200 mg per litre of culture media. These proteins were deployed in ELISA assays to allow comparison of their responses to human sera. Our results suggest that there was no detectable difference between the 6His-tagged and untagged original Ncap proteins but there may be a slight loss of sensitivity of sera to other Ncap isolates.


Subject(s)
COVID-19 , Coronavirus Nucleocapsid Proteins , Escherichia coli , SARS-CoV-2 , Escherichia coli/genetics , Escherichia coli/metabolism , Coronavirus Nucleocapsid Proteins/genetics , Coronavirus Nucleocapsid Proteins/metabolism , Coronavirus Nucleocapsid Proteins/biosynthesis , Coronavirus Nucleocapsid Proteins/isolation & purification , Coronavirus Nucleocapsid Proteins/chemistry , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Humans , COVID-19/virology , Phosphoproteins/genetics , Phosphoproteins/isolation & purification , Phosphoproteins/metabolism
3.
Chemistry ; : e202400432, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38662614

ABSTRACT

In the design of dynamic supramolecular systems used in molecular machines, it is important to understand the binding preferences between the macrocycle and stations along the thread. Here, we apply 1H NMR spectroscopy to investigate the relative stabilities of a series of linear alkylammonium templated pseudorotaxanes with the general formula [H2NRR'][Cr7CoF8(O2CCH2tBu)16] by exchanging the cation in solution. Our results show that the pseudorotaxanes are able to exchange threads via a dissociative mechanism. The position of equilibrium is dependent upon the ammonium cation and solvent used. Short chain primary ammonium cations are shown to be far less favourable macrocycle stations than secondary ammonium cations. Collision-induced dissociation mass spectrometry (CID-MS) has been used to look at disassembly of the pseudorotaxanes in a solvent-free environment and stability trends compared to those in acetone-d6. The energy needed to induce 50% of the precursor ion loss (E50) is used shows a similar trend to the equilibria measured by NMR. The relative stabilities of these hybrid inorganic-organic pseudo-rotaxanes are different to those of host-guest compounds involving crown ethers and this may be valuable for the design of molecular machines.

4.
J Am Chem Soc ; 146(13): 8800-8819, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38498971

ABSTRACT

Understanding the composition, structure and stability of larger synthetic molecules is crucial for their design, yet currently the analytical tools commonly used do not always provide this information. In this perspective, we show how ion mobility mass spectrometry (IM-MS), in combination with tandem mass spectrometry, complementary techniques and computational methods, can be used to structurally characterize synthetic molecules, make and predict new complexes, monitor disassembly processes and determine stability. Using IM-MS, we present an experimental and computational framework for the analysis and design of complex molecular architectures such as (metallo)supramolecular cages, nanoclusters, interlocked molecules, rotaxanes, dendrimers, polymers and host-guest complexes.

5.
Chem Res Toxicol ; 36(12): 1921-1929, 2023 12 18.
Article in English | MEDLINE | ID: mdl-37983188

ABSTRACT

Human exposure to DNA alkylating agents is poorly characterized, partly because only a limited range of specific alkyl DNA adducts have been quantified. The human DNA repair protein, O6-methylguanine O6-methyltransferase (MGMT), irreversibly transfers the alkyl group from DNA O6-alkylguanines (O6-alkGs) to an acceptor cysteine, allowing the simultaneous detection of multiple O6-alkG modifications in DNA by mass spectrometric analysis of the MGMT active site peptide (ASP). Recombinant MGMT was incubated with oligodeoxyribonucleotides (ODNs) containing different O6-alkGs, Temozolomide-methylated calf thymus DNA (Me-CT-DNA), or human colorectal DNA of known O6-MethylG (O6-MeG) levels. It was digested with trypsin, and ASPs were detected and quantified by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry. ASPs containing S-methyl, S-ethyl, S-propyl, S-hydroxyethyl, S-carboxymethyl, S-benzyl, and S-pyridyloxobutyl cysteine groups were detected by incubating MGMT with ODNs containing the corresponding O6-alkGs. The LOQ of ASPs containing S-methylcysteine detected after MGMT incubation with Me-CT-DNA was <0.05 pmol O6-MeG per mg CT-DNA. Incubation of MGMT with human colorectal DNA produced ASPs containing S-methylcysteine at levels that correlated with those of O6-MeG determined previously by HPLC-radioimmunoassay (r2 = 0.74; p = 0.014). O6-CMG, a putative O6-hydroxyethylG adduct, and other potential unidentified MGMT substrates were also detected in human DNA samples. This novel approach to the identification and quantitation of O6-alkGs in human DNA has revealed the existence of a human DNA alkyl adductome that remains to be fully characterized. The methodology establishes a platform for characterizing the human DNA O6-alkG adductome and, given the mutagenic potential of O6-alkGs, can provide mechanistic information about cancer pathogenesis.


Subject(s)
Colorectal Neoplasms , O(6)-Methylguanine-DNA Methyltransferase , Humans , Catalytic Domain , Cysteine , DNA/chemistry , DNA Repair , Mass Spectrometry , O(6)-Methylguanine-DNA Methyltransferase/genetics , Oligodeoxyribonucleotides/chemistry , Peptides
6.
Sci Rep ; 13(1): 15155, 2023 09 13.
Article in English | MEDLINE | ID: mdl-37704681

ABSTRACT

Sensitisation to the lipid transfer protein Pru p 3 is associated with severe allergic reactions to peach, the proteins stability being thought to play a role in its allergenicity. Lipid binding increases susceptibility of Pru p 3 to digestion and so the impact of bile salts on the in vitro gastrointestinal digestibility of Pru p 3 was investigated and digestion products mapped by SDS-PAGE and mass spectrometry. Bile salts enhanced the digestibility of Pru p 3 resulting in an ensemble of around 100 peptides spanning the protein's sequence which were linked by disulphide bonds into structures of ~ 5-6 kDa. IgE binding studies with a serum panel from peach allergic subjects showed digestion reduced, but did not abolish, the IgE reactivity of Pru p 3. These data show the importance of including bile salts in vitro digestion systems and emphasise the need to profile of digestion in a manner that allows identification of immunologically relevant disulphide-linked peptide aggregates.


Subject(s)
Allergens , Prunus persica , Humans , Proteolysis , Bile Acids and Salts , Disulfides , Immunoglobulin E
7.
Chemistry ; 29(71): e202302497, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-37733973

ABSTRACT

Multinuclear, self-assembled lanthanide complexes present clear opportunities as sensors and imaging agents. Despite the widely acknowledged potential of this class of supramolecule, synthetic and characterization challenges continue to limit systematic studies into their self-assembly restricting the number and variety of lanthanide architectures reported relative to their transition metal counterparts. Here we present the first study evaluating the effect of ligand backbone symmetry on multinuclear lanthanide complex self-assembly. Replacement of a symmetric ethylene linker with an unsymmetric amide at the center of a homoditopic ligand governs formation of an unusual Ln6 L6 complex with coordinatively unsaturated metal centers. The choice of triflate as a counterion, and the effect of ionic radii are shown to be critical for formation of the Ln6 L6 complex. The atypical Ln6 L6 architecture is characterized using a combination of mass spectrometry, luminescence, DOSY NMR and EPR spectroscopy measurements. Luminescence experiments support clear differences between comparable Eu6 L6 and Eu2 L3 complexes, with relatively short luminescent lifetimes and low quantum yields observed for the Eu6 L6 structure indicative of non-radiative decay processes. Synthesis of the Gd6 L6 analogue allows three distinct Gd⋯Gd distance measurements to be extracted using homo-RIDME EPR experiments.

8.
Anal Chem ; 95(29): 10966-10974, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37440218

ABSTRACT

Mammalian zinc metallothionein-3 (Zn7MT3) plays an important role in protecting against copper toxicity by scavenging free Cu(II) ions or removing Cu(II) bound to ß-amyloid and α-synuclein. While previous studies reported that Zn7MT3 reacts with Cu(II) ions to form Cu(I)4Zn(II)4MT3ox containing two disulfides (ox), the precise localization of the metal ions and disulfides remained unclear. Here, we undertook comprehensive structural characterization of the metal-protein complexes formed by the reaction between Zn7MT3 and Cu(II) ions using native ion mobility mass spectrometry (IM-MS). The complex formation mechanism was found to involve the disassembly of Zn3S9 and Zn4S11 clusters from Zn7MT3 and reassembly into Cu(I)xZn(II)yMT3ox complexes rather than simply Zn(II)-to-Cu(I) exchange. At neutral pH, the ß-domain was shown to be capable of binding up to six Cu(I) ions to form Cu(I)6Zn(II)4MT3ox, although the most predominant species was the Cu(I)4Zn(II)4MT3ox complex. Under acidic conditions, four Zn(II) ions dissociate, but the Cu(I)4-thiolate cluster remains stable, highlighting the MT3 role as a Cu(II) scavenger even at lower than the cytosolic pH. IM-derived collision cross sections (CCS) reveal that Cu(I)-to-Zn(II) swap in Zn7MT3 with concomitant disulfide formation induces structural compaction and a decrease in conformational heterogeneity. Collision-induced unfolding (CIU) experiments estimated that the native-like folded Cu(I)4Zn(II)4MT3ox conformation is more stable than Zn7MT3. Native top-down MS demonstrated that the Cu(I) ions are exclusively bound to the ß-domain in the Cu(I)4Zn(II)4MT3ox complex as well as the two disulfides, serving as a steric constraint for the Cu(I)4-thiolate cluster. In conclusion, this study enhances our comprehension of the structure, stability, and dynamics of Cu(I)xZn(II)yMT3ox complexes.


Subject(s)
Coordination Complexes , Metallothionein 3 , Animals , Copper/chemistry , Metallothionein/chemistry , Mass Spectrometry , Zinc/chemistry , Coordination Complexes/chemistry , Disulfides , Mammals/metabolism
9.
Anal Bioanal Chem ; 415(18): 4209-4220, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37014373

ABSTRACT

MS SPIDOC is a novel sample delivery system designed for single (isolated) particle imaging at X-ray Free-Electron Lasers that is adaptable towards most large-scale facility beamlines. Biological samples can range from small proteins to MDa particles. Following nano-electrospray ionization, ionic samples can be m/z-filtered and structurally separated before being oriented at the interaction zone. Here, we present the simulation package developed alongside this prototype. The first part describes how the front-to-end ion trajectory simulations have been conducted. Highlighted is a quadrant lens; a simple but efficient device that steers the ion beam within the vicinity of the strong DC orientation field in the interaction zone to ensure spatial overlap with the X-rays. The second part focuses on protein orientation and discusses its potential with respect to diffractive imaging methods. Last, coherent diffractive imaging of prototypical T = 1 and T = 3 norovirus capsids is shown. We use realistic experimental parameters from the SPB/SFX instrument at the European XFEL to demonstrate that low-resolution diffractive imaging data (q < 0.3 nm-1) can be collected with only a few X-ray pulses. Such low-resolution data are sufficient to distinguish between both symmetries of the capsids, allowing to probe low abundant species in a beam if MS SPIDOC is used as sample delivery.


Subject(s)
Capsid , Electrons , Computer Simulation , Synchrotrons , X-Rays
10.
Chem Commun (Camb) ; 59(30): 4471-4474, 2023 Apr 11.
Article in English | MEDLINE | ID: mdl-36960761

ABSTRACT

Ion mobility-mass spectrometry (IM-MS) unraveled different conformational stability in Zn4-7-metallothionein-2. We introduced a new molecular dynamics simulation approach that permitted the exploration of all of the conformational space confirming the experimental data, and revealed that not only the Zn-S bonds but also the α-ß domain interactions modulate protein unfolding.


Subject(s)
Molecular Dynamics Simulation , Zinc , Zinc/chemistry , Metallothionein/chemistry , Metallothionein/metabolism , Protein Conformation , Mass Spectrometry
11.
Chem Rev ; 123(6): 2902-2949, 2023 03 22.
Article in English | MEDLINE | ID: mdl-36827511

ABSTRACT

The investigation of macromolecular biomolecules with ion mobility mass spectrometry (IM-MS) techniques has provided substantial insights into the field of structural biology over the past two decades. An IM-MS workflow applied to a given target analyte provides mass, charge, and conformation, and all three of these can be used to discern structural information. While mass and charge are determined in mass spectrometry (MS), it is the addition of ion mobility that enables the separation of isomeric and isobaric ions and the direct elucidation of conformation, which has reaped huge benefits for structural biology. In this review, where we focus on the analysis of proteins and their complexes, we outline the typical features of an IM-MS experiment from the preparation of samples, the creation of ions, and their separation in different mobility and mass spectrometers. We describe the interpretation of ion mobility data in terms of protein conformation and how the data can be compared with data from other sources with the use of computational tools. The benefit of coupling mobility analysis to activation via collisions with gas or surfaces or photons photoactivation is detailed with reference to recent examples. And finally, we focus on insights afforded by IM-MS experiments when applied to the study of conformationally dynamic and intrinsically disordered proteins.


Subject(s)
Biology , Proteins , Mass Spectrometry/methods , Proteins/chemistry , Protein Conformation , Ions/analysis , Ions/chemistry
12.
Inorg Chem ; 62(6): 2672-2679, 2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36716284

ABSTRACT

Following electrospray ionization, it is common for analytes to enter the gas phase accompanied by a charge-carrying ion, and in most cases, this addition is required to enable detection in the mass spectrometer. These small charge carriers may not be influential in solution but can markedly tune the analyte properties in the gas phase. Therefore, measuring their relative influence on the target molecule can assist our understanding of the structure and stability of the analyte. As the formed adducts are usually distinguishable by their mass, differences in the behavior of the analyte resulting from these added species (e.g., structure, stability, and conformational dynamics) can be easily extracted. Here, we use ion mobility mass spectrometry, supported by density functional theory, to investigate how charge carriers (H+, Na+, K+, and Cs+) as well as water influence the disassembly, stability, and conformational landscape of the homometallic ring [Cr8F8(O2CtBu)16] and the heterometallic rotaxanes [NH2RR'][Cr7MF8(O2CtBu)16], where M = MnII, FeII, CoII, NiII, CuII, ZnII, and CdII. The results yield new insights on their disassembly mechanisms and support previously reported trends in cavity size and transition metal properties, demonstrating the potential of adduct ion studies for characterizing metallosupramolecular complexes in general.

13.
Clin Chem Lab Med ; 61(2): 302-310, 2023 01 27.
Article in English | MEDLINE | ID: mdl-36395058

ABSTRACT

OBJECTIVES: During 2020, the UK's Department of Health and Social Care (DHSC) established the Moonshot programme to fund various diagnostic approaches for the detection of SARS-CoV-2, the pathogen behind the COVID-19 pandemic. Mass spectrometry was one of the technologies proposed to increase testing capacity. METHODS: Moonshot funded a multi-phase development programme, bringing together experts from academia, industry and the NHS to develop a state-of-the-art targeted protein assay utilising enrichment and liquid chromatography tandem mass spectrometry (LC-MS/MS) to capture and detect low levels of tryptic peptides derived from SARS-CoV-2 virus. The assay relies on detection of target peptides, ADETQALPQRK (ADE) and AYNVTQAFGR (AYN), derived from the nucleocapsid protein of SARS-CoV-2, measurement of which allowed the specific, sensitive, and robust detection of the virus from nasopharyngeal (NP) swabs. The diagnostic sensitivity and specificity of LC-MS/MS was compared with reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) via a prospective study. RESULTS: Analysis of NP swabs (n=361) with a median RT-qPCR quantification cycle (Cq) of 27 (range 16.7-39.1) demonstrated diagnostic sensitivity of 92.4% (87.4-95.5), specificity of 97.4% (94.0-98.9) and near total concordance with RT-qPCR (Cohen's Kappa 0.90). Excluding Cq>32 samples, sensitivity was 97.9% (94.1-99.3), specificity 97.4% (94.0-98.9) and Cohen's Kappa 0.95. CONCLUSIONS: This unique collaboration between academia, industry and the NHS enabled development, translation, and validation of a SARS-CoV-2 method in NP swabs to be achieved in 5 months. This pilot provides a model and pipeline for future accelerated development and implementation of LC-MS/MS protein/peptide assays into the routine clinical laboratory.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Pandemics , COVID-19/diagnosis , COVID-19 Testing , Tandem Mass Spectrometry/methods , Chromatography, Liquid , Prospective Studies , Clinical Laboratory Techniques/methods , Sensitivity and Specificity , Peptides
14.
J Am Chem Soc ; 144(49): 22528-22539, 2022 12 14.
Article in English | MEDLINE | ID: mdl-36459680

ABSTRACT

Understanding the fundamental reactivity of polymetallic complexes is challenging due to the complexity of their structures with many possible bond breaking and forming processes. Here, we apply ion mobility mass spectrometry coupled with density functional theory to investigate the disassembly mechanisms and energetics of a family of heterometallic rings and rotaxanes with the general formula [NH2RR'][Cr7MF8(O2CtBu)16] with M = MnII, FeII, CoII, NiII, CuII, ZnII, CdII. Our results show that their stability can be tuned both by altering the d-metal composition in the macrocycle and by the end groups of the secondary ammonium cation [NH2RR']+. Ion mobility probes the conformational landscape of the disassembly process from intact complex to structurally distinct isobaric fragments, providing unique insights to how a given divalent metal tunes the structural dynamics.


Subject(s)
Rotaxanes , Metals/chemistry , Molecular Conformation , Cations, Divalent
15.
JACS Au ; 2(9): 2013-2022, 2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36186554

ABSTRACT

Parkinson's disease (PD) is the second most common neurodegenerative disorder, and identification of robust biomarkers to complement clinical diagnosis will accelerate treatment options. Here, we demonstrate the use of direct infusion of sebum from skin swabs using paper spray ionization coupled with ion mobility mass spectrometry (PS-IM-MS) to determine the regulation of molecular classes of lipids in sebum that are diagnostic of PD. A PS-IM-MS method for sebum samples that takes 3 min per swab was developed and optimized. The method was applied to skin swabs collected from 150 people and elucidates ∼4200 features from each subject, which were independently analyzed. The data included high molecular weight lipids (>600 Da) that differ significantly in the sebum of people with PD. Putative metabolite annotations of several lipid classes, predominantly triglycerides and larger acyl glycerides, were obtained using accurate mass, tandem mass spectrometry, and collision cross section measurements.

16.
PLoS One ; 17(9): e0274967, 2022.
Article in English | MEDLINE | ID: mdl-36137157

ABSTRACT

BACKGROUND: The COVID-19 pandemic is likely to represent an ongoing global health issue given the potential for new variants, vaccine escape and the low likelihood of eliminating all reservoirs of the disease. Whilst diagnostic testing has progressed at a fast pace, the metabolic drivers of outcomes-and whether markers can be found in different biofluids-are not well understood. Recent research has shown that serum metabolomics has potential for prognosis of disease progression. In a hospital setting, collection of saliva samples is more convenient for both staff and patients, and therefore offers an alternative sampling matrix to serum. METHODS: Saliva samples were collected from hospitalised patients with clinical suspicion of COVID-19, alongside clinical metadata. COVID-19 diagnosis was confirmed using RT-PCR testing, and COVID-19 severity was classified using clinical descriptors (respiratory rate, peripheral oxygen saturation score and C-reactive protein levels). Metabolites were extracted and analysed using high resolution liquid chromatography-mass spectrometry, and the resulting peak area matrix was analysed using multivariate techniques. RESULTS: Positive percent agreement of 1.00 between a partial least squares-discriminant analysis metabolomics model employing a panel of 6 features (5 of which were amino acids, one that could be identified by formula only) and the clinical diagnosis of COVID-19 severity was achieved. The negative percent agreement with the clinical severity diagnosis was also 1.00, leading to an area under receiver operating characteristics curve of 1.00 for the panel of features identified. CONCLUSIONS: In this exploratory work, we found that saliva metabolomics and in particular amino acids can be capable of separating high severity COVID-19 patients from low severity COVID-19 patients. This expands the atlas of COVID-19 metabolic dysregulation and could in future offer the basis of a quick and non-invasive means of sampling patients, intended to supplement existing clinical tests, with the goal of offering timely treatment to patients with potentially poor outcomes.


Subject(s)
COVID-19 , Amino Acids/metabolism , Biomarkers/metabolism , C-Reactive Protein/metabolism , COVID-19/diagnosis , COVID-19 Testing , Chromatography, Liquid/methods , Humans , Mass Spectrometry/methods , Metabolomics/methods , Pandemics , Saliva/metabolism
17.
Metabolites ; 12(8)2022 Jul 30.
Article in English | MEDLINE | ID: mdl-36005585

ABSTRACT

The effect of COVID-19 infection on the human metabolome has been widely reported, but to date all such studies have focused on a single wave of infection. COVID-19 has generated numerous waves of disease with different clinical presentations, and therefore it is pertinent to explore whether metabolic disturbance changes accordingly, to gain a better understanding of its impact on host metabolism and enable better treatments. This work used a targeted metabolomics platform (Biocrates Life Sciences) to analyze the serum of 164 hospitalized patients, 123 with confirmed positive COVID-19 RT-PCR tests and 41 providing negative tests, across two waves of infection. Seven COVID-19-positive patients also provided longitudinal samples 2-7 months after infection. Changes to metabolites and lipids between positive and negative patients were found to be dependent on collection wave. A machine learning model identified six metabolites that were robust in diagnosing positive patients across both waves of infection: TG (22:1_32:5), TG (18:0_36:3), glutamic acid (Glu), glycolithocholic acid (GLCA), aspartic acid (Asp) and methionine sulfoxide (Met-SO), with an accuracy of 91%. Although some metabolites (TG (18:0_36:3) and Asp) returned to normal after infection, glutamic acid was still dysregulated in the longitudinal samples. This work demonstrates, for the first time, that metabolic dysregulation has partially changed over the course of the pandemic, reflecting changes in variants, clinical presentation and treatment regimes. It also shows that some metabolic changes are robust across waves, and these can differentiate COVID-19-positive individuals from controls in a hospital setting. This research also supports the hypothesis that some metabolic pathways are disrupted several months after COVID-19 infection.

18.
Sci Data ; 9(1): 492, 2022 08 13.
Article in English | MEDLINE | ID: mdl-35963929

ABSTRACT

Despite its greener credentials, biomanufacturing remains financially uncompetitive compared with the higher carbon emitting, hydrocarbon-based chemical industry. Replacing traditional chassis such as E. coli with novel robust organisms, are a route to cost reduction for biomanufacturing. Extremophile bacteria such as the halophilic Halomonas bluephagenesis TD01 exemplify this potential by thriving in environments inherently inimical to other organisms, so reducing sterilisation costs. Novel chassis are inevitably less well annotated than established organisms. Rapid characterisation along with community data sharing will facilitate adoption of such organisms for biomanufacturing. The data record comprises a newly sequenced genome for the organism and evidence via LC-MS based proteomics for expression of 1160 proteins (30% of the proteome) including baseline quantification of 1063 proteins (27% of the proteome), and a spectral library enabling re-use for targeted LC-MS proteomics assays. Protein data are annotated with KEGG Orthology, enabling rapid matching of quantitative data to pathways of interest to biomanufacturing.


Subject(s)
Halomonas , Proteome , Escherichia coli , Gene Library , Halomonas/genetics , Halomonas/metabolism , Proteome/genetics , Proteomics
19.
Anal Chem ; 94(35): 12248-12255, 2022 09 06.
Article in English | MEDLINE | ID: mdl-36001095

ABSTRACT

The gas phase is an idealized laboratory for the study of protein structure, from which it is possible to examine stable and transient forms of mass-selected ions in the absence of bulk solvent. With ion mobility-mass spectrometry (IM-MS) apparatus built to operate at both cryogenic and elevated temperatures, we have examined conformational transitions that occur to the monomeric proteins: ubiquitin, lysozyme, and α-synuclein as a function of temperature and in source activation. We rationalize the experimental observations with a temperature-dependent framework model and comparison to known conformers. Data from ubiquitin show unfolding transitions that proceed through diverse and highly elongated intermediate states, which converge to more compact structures. These findings contrast with data obtained from lysozyme─a protein where (un)-folding plasticity is restricted by four disulfide linkages, although this is alleviated in its reduced form. For structured proteins, collision activation of the protein ions in-source enables subsequent "freezing" or thermal annealing of unfolding intermediates, whereas disordered proteins restructure substantially at 250 K even without activation, indicating that cold denaturation can occur without solvent. These data are presented in the context of a toy model framework that describes the relative occupancy of the available conformational space.


Subject(s)
Protein Unfolding , Proteins , Ions/chemistry , Mass Spectrometry/methods , Protein Conformation , Proteins/chemistry , Solvents , Temperature , Ubiquitin/chemistry
20.
Sci Rep ; 12(1): 11867, 2022 07 13.
Article in English | MEDLINE | ID: mdl-35831456

ABSTRACT

The majority of metabolomics studies to date have utilised blood serum or plasma, biofluids that do not necessarily address the full range of patient pathologies. Here, correlations between serum metabolites, salivary metabolites and sebum lipids are studied for the first time. 83 COVID-19 positive and negative hospitalised participants provided blood serum alongside saliva and sebum samples for analysis by liquid chromatography mass spectrometry. Widespread alterations to serum-sebum lipid relationships were observed in COVID-19 positive participants versus negative controls. There was also a marked correlation between sebum lipids and the immunostimulatory hormone dehydroepiandrosterone sulphate in the COVID-19 positive cohort. The biofluids analysed herein were also compared in terms of their ability to differentiate COVID-19 positive participants from controls; serum performed best by multivariate analysis (sensitivity and specificity of 0.97), with the dominant changes in triglyceride and bile acid levels, concordant with other studies identifying dyslipidemia as a hallmark of COVID-19 infection. Sebum performed well (sensitivity 0.92; specificity 0.84), with saliva performing worst (sensitivity 0.78; specificity 0.83). These findings show that alterations to skin lipid profiles coincide with dyslipidaemia in serum. The work also signposts the potential for integrated biofluid analyses to provide insight into the whole-body atlas of pathophysiological conditions.


Subject(s)
COVID-19 , Sebum , Humans , Lipids/analysis , Metabolomics , Saliva/metabolism , Sebum/metabolism , Serum/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...