Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Nat Biotechnol ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714897

ABSTRACT

A central challenge in developing personalized cancer cell immunotherapy is the identification of tumor-reactive T cell receptors (TCRs). By exploiting the distinct transcriptomic profile of tumor-reactive T cells relative to bystander cells, we build and benchmark TRTpred, an antigen-agnostic in silico predictor of tumor-reactive TCRs. We integrate TRTpred with an avidity predictor to derive a combinatorial algorithm of clinically relevant TCRs for personalized T cell therapy and benchmark it in patient-derived xenografts.

2.
Nature ; 629(8011): 426-434, 2024 May.
Article in English | MEDLINE | ID: mdl-38658764

ABSTRACT

Expansion of antigen-experienced CD8+ T cells is critical for the success of tumour-infiltrating lymphocyte (TIL)-adoptive cell therapy (ACT) in patients with cancer1. Interleukin-2 (IL-2) acts as a key regulator of CD8+ cytotoxic T lymphocyte functions by promoting expansion and cytotoxic capability2,3. Therefore, it is essential to comprehend mechanistic barriers to IL-2 sensing in the tumour microenvironment to implement strategies to reinvigorate IL-2 responsiveness and T cell antitumour responses. Here we report that prostaglandin E2 (PGE2), a known negative regulator of immune response in the tumour microenvironment4,5, is present at high concentrations in tumour tissue from patients and leads to impaired IL-2 sensing in human CD8+ TILs via the PGE2 receptors EP2 and EP4. Mechanistically, PGE2 inhibits IL-2 sensing in TILs by downregulating the IL-2Rγc chain, resulting in defective assembly of IL-2Rß-IL2Rγc membrane dimers. This results in impaired IL-2-mTOR adaptation and PGC1α transcriptional repression, causing oxidative stress and ferroptotic cell death in tumour-reactive TILs. Inhibition of PGE2 signalling to EP2 and EP4 during TIL expansion for ACT resulted in increased IL-2 sensing, leading to enhanced proliferation of tumour-reactive TILs and enhanced tumour control once the cells were transferred in vivo. Our study reveals fundamental features that underlie impairment of human TILs mediated by PGE2 in the tumour microenvironment. These findings have therapeutic implications for cancer immunotherapy and cell therapy, and enable the development of targeted strategies to enhance IL-2 sensing and amplify the IL-2 response in TILs, thereby promoting the expansion of effector T cells with enhanced therapeutic potential.


Subject(s)
CD8-Positive T-Lymphocytes , Dinoprostone , Interleukin Receptor Common gamma Subunit , Interleukin-2 , Lymphocytes, Tumor-Infiltrating , Mitochondria , Receptors, Prostaglandin E, EP2 Subtype , Receptors, Prostaglandin E, EP4 Subtype , Signal Transduction , Humans , Dinoprostone/metabolism , Mitochondria/metabolism , Mitochondria/drug effects , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Lymphocytes, Tumor-Infiltrating/drug effects , Signal Transduction/drug effects , Interleukin-2/metabolism , Receptors, Prostaglandin E, EP4 Subtype/metabolism , Receptors, Prostaglandin E, EP4 Subtype/antagonists & inhibitors , Receptors, Prostaglandin E, EP2 Subtype/metabolism , Receptors, Prostaglandin E, EP2 Subtype/antagonists & inhibitors , Interleukin Receptor Common gamma Subunit/deficiency , Interleukin Receptor Common gamma Subunit/genetics , Interleukin Receptor Common gamma Subunit/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/drug effects , Interleukin-2 Receptor beta Subunit/metabolism , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Cell Proliferation/drug effects , Animals , Mice , Down-Regulation/drug effects , Neoplasms/immunology , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology
3.
Sci Immunol ; 9(92): eadg7995, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38306416

ABSTRACT

Adoptive cell therapy (ACT) using ex vivo-expanded tumor-infiltrating lymphocytes (TILs) can eliminate or shrink metastatic melanoma, but its long-term efficacy remains limited to a fraction of patients. Using longitudinal samples from 13 patients with metastatic melanoma treated with TIL-ACT in a phase 1 clinical study, we interrogated cellular states within the tumor microenvironment (TME) and their interactions. We performed bulk and single-cell RNA sequencing, whole-exome sequencing, and spatial proteomic analyses in pre- and post-ACT tumor tissues, finding that ACT responders exhibited higher basal tumor cell-intrinsic immunogenicity and mutational burden. Compared with nonresponders, CD8+ TILs exhibited increased cytotoxicity, exhaustion, and costimulation, whereas myeloid cells had increased type I interferon signaling in responders. Cell-cell interaction prediction analyses corroborated by spatial neighborhood analyses revealed that responders had rich baseline intratumoral and stromal tumor-reactive T cell networks with activated myeloid populations. Successful TIL-ACT therapy further reprogrammed the myeloid compartment and increased TIL-myeloid networks. Our systematic target discovery study identifies potential T-myeloid cell network-based biomarkers that could improve patient selection and guide the design of ACT clinical trials.


Subject(s)
Immunotherapy, Adoptive , Melanoma , Humans , Melanoma/genetics , Lymphocytes, Tumor-Infiltrating/metabolism , Proteomics , CD8-Positive T-Lymphocytes/metabolism , Tumor Microenvironment
4.
medRxiv ; 2024 Jan 21.
Article in English | MEDLINE | ID: mdl-38293061

ABSTRACT

Despite the overall efficacy of immune checkpoint blockade (ICB) for mismatch repair deficiency (MMRD) across tumor types, a sizable fraction of patients with MMRD still do not respond to ICB. We performed mutational signature analysis of panel sequencing data (n = 95) from MMRD cases treated with ICB. We discover that T>C-rich single base substitution (SBS) signatures-SBS26 and SBS54 from the COSMIC Mutational Signatures catalog-identify MMRD patients with significantly shorter overall survival. Tumors with a high burden of SBS26 show over-expression and enriched mutations of genes involved in double-strand break repair and other DNA repair pathways. They also display chromosomal instability (CIN), likely related to replication fork instability, leading to copy number losses that trigger immune evasion. SBS54 is associated with transcriptional activity and not with CIN, defining a distinct subtype. Consistently, cancer cell lines with a high burden of SBS26 and SBS54 are sensitive to treatments targeting pathways related to their proposed etiology. Together, our analysis offers an explanation for the heterogeneous responses to ICB among MMRD patients and supports an SBS signature-based predictor as a prognostic biomarker for differential ICB response.

5.
Nat Cancer ; 4(10): 1410-1417, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37735588

ABSTRACT

We have previously shown that vaccination with tumor-pulsed dendritic cells amplifies neoantigen recognition in ovarian cancer. Here, in a phase 1 clinical study ( NCT01312376 /UPCC26810) including 19 patients, we show that such responses are further reinvigorated by subsequent adoptive transfer of vaccine-primed, ex vivo-expanded autologous peripheral blood T cells. The treatment is safe, and epitope spreading with novel neopeptide reactivities was observed after cell infusion in patients who experienced clinical benefit, suggesting reinvigoration of tumor-sculpting immunity.


Subject(s)
Ovarian Neoplasms , Vaccines , Humans , Female , Ovarian Neoplasms/therapy , Adoptive Transfer , Vaccination , T-Lymphocytes
6.
Nat Commun ; 14(1): 3188, 2023 06 06.
Article in English | MEDLINE | ID: mdl-37280206

ABSTRACT

The success of cancer immunotherapy depends in part on the strength of antigen recognition by T cells. Here, we characterize the T cell receptor (TCR) functional (antigen sensitivity) and structural (monomeric pMHC-TCR off-rates) avidities of 371 CD8 T cell clones specific for neoantigens, tumor-associated antigens (TAAs) or viral antigens isolated from tumors or blood of patients and healthy donors. T cells from tumors exhibit stronger functional and structural avidity than their blood counterparts. Relative to TAA, neoantigen-specific T cells are of higher structural avidity and, consistently, are preferentially detected in tumors. Effective tumor infiltration in mice models is associated with high structural avidity and CXCR3 expression. Based on TCR biophysicochemical properties, we derive and apply an in silico model predicting TCR structural avidity and validate the enrichment in high avidity T cells in patients' tumors. These observations indicate a direct relationship between neoantigen recognition, T cell functionality and tumor infiltration. These results delineate a rational approach to identify potent T cells for personalized cancer immunotherapy.


Subject(s)
Melanoma , Animals , Mice , Melanoma/metabolism , CD8-Positive T-Lymphocytes , Receptors, Antigen, T-Cell/metabolism , Antigens, Neoplasm , Clone Cells/metabolism
7.
Sci Transl Med ; 14(661): eaax8933, 2022 09 07.
Article in English | MEDLINE | ID: mdl-36070364

ABSTRACT

Brain metastasis is a complication of increasing incidence in patients with breast cancer at advanced disease stage. It is a severe condition characterized by a rapid decline in quality of life and poor prognosis. There is a critical clinical need to develop effective therapies to prevent and treat brain metastases. Here, we describe a unique and robust spontaneous preclinical model of breast cancer metastasis to the brain (4T1-BM2) in mice that has been instrumental in uncovering molecular mechanisms guiding metastatic dissemination and colonization of the brain. Key experimental findings were validated in the additional murine D2A1-BM2 model and in human MDA231-BrM2 model. Gene expression analyses and functional studies, coupled with clinical transcriptomic and histopathological investigations, identified connexins (Cxs) and focal adhesion kinase (FAK) as master molecules orchestrating breast cancer colonization of the brain. Cx31 promoted homotypic tumor cell adhesion, heterotypic tumor-astrocyte interaction, and FAK phosphorylation. FAK signaling prompted NF-κB activation inducing Lamc2 expression and laminin 332 (laminin 5) deposition, α6 integrin-mediated adhesion, and sustained survival and growth within brain parenchyma. In the MDA231-BrM2 model, the human homologous molecules CX43, LAMA4, and α3 integrin were involved. Systemic treatment with FAK inhibitors reduced brain metastasis progression. In conclusion, we report a spontaneous model of breast cancer metastasis to the brain and identified Cx-mediated FAK-NF-κB signaling as a mechanism promoting cell-autonomous and microenvironmentally controlled cell survival for brain colonization. Considering the limited therapeutic options for brain metastatic disease in cancer patients, we propose FAK as a therapeutic candidate to further pursue in the clinic.


Subject(s)
Brain Neoplasms , Breast Neoplasms , Animals , Brain/metabolism , Breast Neoplasms/genetics , Connexins/metabolism , Female , Focal Adhesion Protein-Tyrosine Kinases/genetics , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Humans , Melanoma , Mice , NF-kappa B/metabolism , Quality of Life , Skin Neoplasms , Melanoma, Cutaneous Malignant
8.
Nat Cardiovasc Res ; 1(5): 476-490, 2022 May.
Article in English | MEDLINE | ID: mdl-35602406

ABSTRACT

Stem and progenitor cells residing in the intestinal crypts drive the majority of colorectal cancers (CRCs), yet vascular contribution to this niche remains largely unexplored. VEGFA is a key driver of physiological and tumor angiogenesis. Accordingly, current anti-angiogenic cancer therapies target the VEGFA pathway. Here we report that in CRC expansion of the stem/progenitor pool in intestinal crypts requires VEGFA-independent growth and remodeling of blood vessels. Epithelial transformation induced expression of the endothelial peptide apelin, directs migration of distant venous endothelial cells towards progenitor niche vessels ensuring optimal perfusion. In the absence of apelin, loss of injury-inducible PROX1+ epithelial progenitors inhibited both incipient and advanced intestinal tumor growth. Our results establish fundamental principles for the reciprocal communication between vasculature and the intestinal progenitor niche and provide a mechanism for resistance to VEGFA-targeting drugs in CRCs.

9.
Cancer Discov ; 12(1): 108-133, 2022 01.
Article in English | MEDLINE | ID: mdl-34479871

ABSTRACT

Developing strategies to inflame tumors is critical for increasing response to immunotherapy. Here, we report that low-dose radiotherapy (LDRT) of murine tumors promotes T-cell infiltration and enables responsiveness to combinatorial immunotherapy in an IFN-dependent manner. Treatment efficacy relied upon mobilizing both adaptive and innate immunity and depended on both cytotoxic CD4+ and CD8+ T cells. LDRT elicited predominantly CD4+ cells with features of exhausted effector cytotoxic cells, with a subset expressing NKG2D and exhibiting proliferative capacity, as well as a unique subset of activated dendritic cells expressing the NKG2D ligand RAE1. We translated these findings to a phase I clinical trial administering LDRT, low-dose cyclophosphamide, and immune checkpoint blockade to patients with immune-desert tumors. In responsive patients, the combinatorial treatment triggered T-cell infiltration, predominantly of CD4+ cells with Th1 signatures. Our data support the rational combination of LDRT with immunotherapy for effectively treating low T cell-infiltrated tumors. SIGNIFICANCE: Low-dose radiation reprogrammed the tumor microenvironment of tumors with scarce immune infiltration and together with immunotherapy induced simultaneous mobilization of innate and adaptive immunity, predominantly CD4+ effector T cells, to achieve tumor control dependent on NKG2D. The combination induced important responses in patients with metastatic immune-cold tumors.This article is highlighted in the In This Issue feature, p. 1.


Subject(s)
Adenocarcinoma, Papillary/radiotherapy , Ovarian Neoplasms/radiotherapy , Adaptive Immunity , Adenocarcinoma, Papillary/immunology , Animals , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Disease Models, Animal , Female , Humans , Lymphocytes, Tumor-Infiltrating , Mice , Mice, Inbred C57BL , Ovarian Neoplasms/immunology , Radiotherapy Dosage , Tumor Microenvironment
10.
Cancer Cell ; 39(12): 1623-1642.e20, 2021 12 13.
Article in English | MEDLINE | ID: mdl-34739845

ABSTRACT

The mechanisms regulating exhaustion of tumor-infiltrating lymphocytes (TIL) and responsiveness to PD-1 blockade remain partly unknown. In human ovarian cancer, we show that tumor-specific CD8+ TIL accumulate in tumor islets, where they engage antigen and upregulate PD-1, which restrains their functions. Intraepithelial PD-1+CD8+ TIL can be, however, polyfunctional. PD-1+ TIL indeed exhibit a continuum of exhaustion states, with variable levels of CD28 costimulation, which is provided by antigen-presenting cells (APC) in intraepithelial tumor myeloid niches. CD28 costimulation is associated with improved effector fitness of exhausted CD8+ TIL and is required for their activation upon PD-1 blockade, which also requires tumor myeloid APC. Exhausted TIL lacking proper CD28 costimulation in situ fail to respond to PD-1 blockade, and their response may be rescued by local CTLA-4 blockade and tumor APC stimulation via CD40L.


Subject(s)
Antigen-Presenting Cells/metabolism , CD28 Antigens/metabolism , Immune Checkpoint Inhibitors/therapeutic use , Myeloid Cells/metabolism , Neoplasms/drug therapy , Stem Cell Niche/genetics , Humans , Immune Checkpoint Inhibitors/pharmacology , Neoplasms/immunology
11.
Cell Rep ; 36(3): 109412, 2021 07 20.
Article in English | MEDLINE | ID: mdl-34289354

ABSTRACT

In this study, we investigate mechanisms leading to inflammation and immunoreactivity in ovarian tumors with homologous recombination deficiency (HRD). BRCA1 loss is found to lead to transcriptional reprogramming in tumor cells and cell-intrinsic inflammation involving type I interferon (IFN) and stimulator of IFN genes (STING). BRCA1-mutated (BRCA1mut) tumors are thus T cell inflamed at baseline. Genetic deletion or methylation of DNA-sensing/IFN genes or CCL5 chemokine is identified as a potential mechanism to attenuate T cell inflammation. Alternatively, in BRCA1mut cancers retaining inflammation, STING upregulates VEGF-A, mediating immune resistance and tumor progression. Tumor-intrinsic STING elimination reduces neoangiogenesis, increases CD8+ T cell infiltration, and reverts therapeutic resistance to dual immune checkpoint blockade (ICB). VEGF-A blockade phenocopies genetic STING loss and synergizes with ICB and/or poly(ADP-ribose) polymerase (PARP) inhibitors to control the outgrowth of Trp53-/-Brca1-/- but not Brca1+/+ ovarian tumors in vivo, offering rational combinatorial therapies for HRD cancers.


Subject(s)
BRCA1 Protein/deficiency , Inflammation/pathology , Membrane Proteins/metabolism , Ovarian Neoplasms/immunology , Ovarian Neoplasms/pathology , Animals , BRCA1 Protein/metabolism , Cell Line, Tumor , Chemokine CCL5/metabolism , Chromatin/metabolism , DNA/metabolism , DNA Damage , Epigenesis, Genetic , Female , Gene Silencing , Humans , Immune Checkpoint Inhibitors/pharmacology , Inflammation/complications , Inflammation/immunology , Interferons/metabolism , Mice, Inbred C57BL , Neoplasm Grading , Neovascularization, Pathologic/pathology , Ovarian Neoplasms/complications , Ovarian Neoplasms/genetics , Protein Serine-Threonine Kinases/metabolism , T-Lymphocytes/immunology , Transcription, Genetic , Vascular Endothelial Growth Factor A/metabolism
12.
Front Immunol ; 12: 633910, 2021.
Article in English | MEDLINE | ID: mdl-33995353

ABSTRACT

Data obtained with cytometry are increasingly complex and their interrogation impacts the type and quality of knowledge gained. Conventional supervised analyses are limited to pre-defined cell populations and do not exploit the full potential of data. Here, in the context of a clinical trial of cancer patients treated with radiotherapy, we performed longitudinal flow cytometry analyses to identify multiple distinct cell populations in circulating whole blood. We cross-compared the results from state-of-the-art recommended supervised analyses with results from MegaClust, a high-performance data-driven clustering algorithm allowing fast and robust identification of cell-type populations. Ten distinct cell populations were accurately identified by supervised analyses, including main T, B, dendritic cell (DC), natural killer (NK) and monocytes subsets. While all ten subsets were also identified with MegaClust, additional cell populations were revealed (e.g. CD4+HLA-DR+ and NKT-like subsets), and DC profiling was enriched by the assignment of additional subset-specific markers. Comparison between transcriptomic profiles of purified DC populations and publicly available datasets confirmed the accuracy of the unsupervised clustering algorithm and demonstrated its potential to identify rare and scarcely described cell subsets. Our observations show that data-driven analyses of cytometry data significantly enrich the amount and quality of knowledge gained, representing an important step in refining the characterization of immune responses.


Subject(s)
Algorithms , Dendritic Cells/metabolism , Flow Cytometry , Immunophenotyping , Leukocytes, Mononuclear/metabolism , Prostatic Neoplasms/blood , Biomarkers/blood , Clinical Trials, Phase I as Topic , Cluster Analysis , Dendritic Cells/immunology , Humans , Leukocytes, Mononuclear/immunology , Longitudinal Studies , Male , Phenotype , Proof of Concept Study , Prostatic Neoplasms/genetics , Prostatic Neoplasms/immunology , Prostatic Neoplasms/radiotherapy , RNA-Seq , Time Factors , Transcriptome , Treatment Outcome
13.
Cancer Res ; 81(3): 594-605, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33526470

ABSTRACT

Early detection and adjuvant therapies have significantly improved survival of patients with breast cancer over the past three decades. In contrast, management of metastatic disease remains unresolved. Brain metastasis is a late complication frequently observed among patients with metastatic breast cancer, whose poor prognosis calls for novel and more effective therapies. Here, we report that active hypoxia inducible factor-1 (HIF1) signaling and loss of the miRNA let-7d concur to promote brain metastasis in a recently established model of spontaneous breast cancer metastasis from the primary site to the brain (4T1-BM2), and additionally in murine and human experimental models of breast cancer brain metastasis (D2A1-BM2 and MDA231-BrM2). Active HIF1 and let-7d loss upregulated expression of platelet-derived growth factor (PDGF) B/A in murine and human brain metastatic cells, respectively, while either individual silencing of HIF1α and PDGF-A/B or let-7d overexpression suppressed brain metastasis formation in the tested models. Let-7d silencing upregulated HIF1α expression and HIF1 activity, indicating a regulatory hierarchy of the system. The clinical relevance of the identified targets was supported by human gene expression data analyses. Treatment of mice with nilotinib, a kinase inhibitor impinging on PDGF receptor (PDGFR) signaling, prevented formation of spontaneous brain metastases in the 4T1-BM2 model and reduced growth of established brain metastases in mouse and human models. These results identify active HIF1 signaling and let-7d loss as coordinated events promoting breast cancer brain metastasis through increased expression of PDGF-A/B. Moreover, they identify PDGFR inhibition as a potentially actionable therapeutic strategy for patients with brain metastatis. SIGNIFICANCE: These findings show that loss of miRNA let-7d and active HIF1 signaling promotes breast cancer brain metastasis via PDGF and that pharmacologic inhibition of PDGFR suppresses brain metastasis, suggesting novel therapeutic opportunities. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/3/594/F1.large.jpg.See related article by Thies et al., p. 606.


Subject(s)
Breast Neoplasms , MicroRNAs , Animals , Brain , Breast Neoplasms/genetics , Cell Line, Tumor , Humans , Hypoxia-Inducible Factor 1 , Mice , MicroRNAs/genetics , Platelet-Derived Growth Factor/genetics
14.
Clin Cancer Res ; 26(16): 4313-4325, 2020 08 15.
Article in English | MEDLINE | ID: mdl-32430479

ABSTRACT

PURPOSE: The cytokine IL22 promotes tumor progression in murine models of colorectal cancer. However, the clinical significance of IL22 in human colorectal cancer remains unclear. We sought to determine whether the IL22 pathway is associated with prognosis in human colorectal cancer, and to identify mechanisms by which IL22 can influence disease progression. EXPERIMENTAL DESIGN: Transcriptomic data from stage II/III colon cancers in independent discovery (GSE39582 population-based cohort, N = 566) and verification (PETACC3 clinical trial, N = 752) datasets were used to investigate the association between IL22 receptor expression (encoded by the genes IL22RA1 and IL10RB), tumor mutation status, and clinical outcome using Cox proportional hazard models. Functional interactions between IL22 and mutant KRAS were elucidated using human colorectal cancer cell lines and primary tumor organoids. RESULTS: Transcriptomic analysis revealed a poor-prognosis subset of tumors characterized by high expression of IL22RA1, the alpha subunit of the heterodimeric IL22 receptor, and KRAS mutation [relapse-free survival (RFS): HR = 2.93, P = 0.0006; overall survival (OS): HR = 2.45, P = 0.0023]. KRAS mutations showed a similar interaction with IL10RB and conferred the worst prognosis in tumors with high expression of both IL22RA1 and IL10RB (RFS: HR = 3.81, P = 0.0036; OS: HR = 3.90, P = 0.0050). Analysis of human colorectal cancer cell lines and primary tumor organoids, including an isogenic cell line pair that differed only in KRAS mutation status, showed that IL22 and mutant KRAS cooperatively enhance cancer cell proliferation, in part through augmentation of the Myc pathway. CONCLUSIONS: Interactions between KRAS and IL22 signaling may underlie a previously unrecognized subset of clinically aggressive colorectal cancer that could benefit from therapeutic modulation of the IL22 pathway.


Subject(s)
Biomarkers, Tumor/genetics , Colonic Neoplasms/genetics , Interleukins/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Aged , Animals , Colonic Neoplasms/pathology , Disease-Free Survival , Female , Gene Expression Regulation, Neoplastic/genetics , Humans , Interleukin-10 Receptor beta Subunit/genetics , Male , Mice , Middle Aged , Mutation/genetics , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/pathology , Prognosis , Receptors, Interleukin/genetics , Signal Transduction/genetics , ras Proteins/genetics , Interleukin-22
15.
J Clin Invest ; 130(3): 1199-1216, 2020 03 02.
Article in English | MEDLINE | ID: mdl-32015230

ABSTRACT

Mutations in APC promote colorectal cancer (CRC) progression through uncontrolled WNT signaling. Patients with desmoplastic CRC have a significantly worse prognosis and do not benefit from chemotherapy, but the mechanisms underlying the differential responses of APC-mutant CRCs to chemotherapy are not well understood. We report that expression of the transcription factor prospero homeobox 1 (PROX1) was reduced in desmoplastic APC-mutant human CRCs. In genetic Apc-mutant mouse models, loss of Prox1 promoted the growth of desmoplastic, angiogenic, and immunologically silent tumors through derepression of Mmp14. Although chemotherapy inhibited Prox1-proficient tumors, it promoted further stromal activation, angiogenesis, and invasion in Prox1-deficient tumors. Blockade of vascular endothelial growth factor A (VEGFA) and angiopoietin-2 (ANGPT2) combined with CD40 agonistic antibodies promoted antiangiogenic and immunostimulatory reprogramming of Prox1-deficient tumors, destroyed tumor fibrosis, and unleashed T cell-mediated killing of cancer cells. These results pinpoint the mechanistic basis of chemotherapy-induced hyperprogression and illustrate a therapeutic strategy for chemoresistant and desmoplastic CRCs.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Antineoplastic Agents, Immunological/pharmacology , Colorectal Neoplasms , Drug Resistance, Neoplasm/drug effects , Immunotherapy , Neovascularization, Pathologic , Adenomatous Polyposis Coli Protein/genetics , Adenomatous Polyposis Coli Protein/immunology , Angiopoietin-2/genetics , Angiopoietin-2/immunology , Animals , Cell Line , Colorectal Neoplasms/blood supply , Colorectal Neoplasms/genetics , Colorectal Neoplasms/immunology , Colorectal Neoplasms/therapy , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/immunology , Homeodomain Proteins/genetics , Homeodomain Proteins/immunology , Humans , Matrix Metalloproteinase 14/genetics , Matrix Metalloproteinase 14/immunology , Mice , Neoplasms, Experimental/blood supply , Neoplasms, Experimental/immunology , Neoplasms, Experimental/pathology , Neoplasms, Experimental/therapy , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/immunology , Neovascularization, Pathologic/therapy , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/immunology , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/immunology
16.
JCI Insight ; 52019 06 25.
Article in English | MEDLINE | ID: mdl-31237864

ABSTRACT

Colorectal cancer (CRC) is the third most frequent neoplastic disorder and is a main cause of tumor-related mortality as many patients progress to stage IV metastatic CRC. Standard care consists of combination chemotherapy (FOLFIRI or FOLFOX). Patients with WT KRAS typing are eligible to receive anti-EGFR therapy combined with chemotherapy. Unfortunately, predicting efficacy of CRC anti-EGFR therapy has remained challenging. Here we uncover that the EGFR-pathway component RasGRP1 acts as CRC tumor suppressor in the context of aberrant Wnt signaling. We find that RasGRP1 suppresses EGF-driven proliferation of colonic epithelial organoids. Having established that RasGRP1 dosage levels impacts biology, we focused on CRC patients next. Mining five different data platforms, we establish that RasGRP1 expression levels decrease with CRC progression and predict poor clinical outcome of patients. Lastly, deletion of one or two Rasgrp1 alleles makes CRC spheroids more susceptible to EGFR inhibition. Retrospective analysis of the CALGB80203 clinical trial shows that addition of anti-EGFR therapy to chemotherapy significantly improves outcome for CRC patients when tumors express low RasGRP1 suppressor levels. In sum, RasGRP1 is a unique biomarker positioned in the EGFR pathway and of potential relevance to anti-EGFR therapy for CRC patients.


Subject(s)
Antineoplastic Agents, Immunological/therapeutic use , Biomarkers, Tumor/metabolism , Colorectal Neoplasms/drug therapy , DNA-Binding Proteins/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Tumor Suppressor Proteins/metabolism , Animals , Antineoplastic Agents, Immunological/pharmacology , Biomarkers, Tumor/analysis , Biomarkers, Tumor/genetics , Cell Proliferation/drug effects , Cetuximab/pharmacology , Cetuximab/therapeutic use , Clinical Trials as Topic , Colorectal Neoplasms/mortality , Colorectal Neoplasms/pathology , Computational Biology , DNA-Binding Proteins/analysis , DNA-Binding Proteins/genetics , Datasets as Topic , Disease Models, Animal , Disease Progression , Disease-Free Survival , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Guanine Nucleotide Exchange Factors/analysis , Guanine Nucleotide Exchange Factors/genetics , Humans , Kaplan-Meier Estimate , Mice , Mice, Knockout , Primary Cell Culture , Prognosis , Signal Transduction/drug effects , Spheroids, Cellular , Tumor Cells, Cultured , Tumor Suppressor Proteins/analysis , Tumor Suppressor Proteins/genetics
17.
Cancer Cell ; 35(6): 885-900.e10, 2019 06 10.
Article in English | MEDLINE | ID: mdl-31185212

ABSTRACT

We investigated the role of chemokines in regulating T cell accumulation in solid tumors. CCL5 and CXCL9 overexpression was associated with CD8+ T cell infiltration in solid tumors. T cell infiltration required tumor cell-derived CCL5 and was amplified by IFN-γ-inducible, myeloid cell-secreted CXCL9. CCL5 and CXCL9 coexpression revealed immunoreactive tumors with prolonged survival and response to checkpoint blockade. Loss of CCL5 expression in human tumors was associated with epigenetic silencing through DNA methylation. Reduction of CCL5 expression caused tumor-infiltrating lymphocyte (TIL) desertification, whereas forced CCL5 expression prevented Cxcl9 expression and TILs loss, and attenuated tumor growth in mice through IFN-γ. The cooperation between tumor-derived CCL5 and IFN-γ-inducible CXCR3 ligands secreted by myeloid cells is key for orchestrating T cell infiltration in immunoreactive and immunoresponsive tumors.


Subject(s)
CD8-Positive T-Lymphocytes/metabolism , Chemotaxis, Leukocyte , Cytokines/metabolism , Dendritic Cells/metabolism , Lymphocyte Activation , Lymphocytes, Tumor-Infiltrating/metabolism , Macrophages/metabolism , Ovarian Neoplasms/metabolism , Animals , Antineoplastic Agents, Immunological/pharmacology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Cell Line, Tumor , Chemokine CCL5/genetics , Chemokine CCL5/immunology , Chemokine CCL5/metabolism , Chemokine CXCL9/genetics , Chemokine CXCL9/immunology , Chemokine CXCL9/metabolism , Chemotaxis, Leukocyte/drug effects , Coculture Techniques , Cytokines/genetics , Cytokines/immunology , DNA Methylation , Dendritic Cells/drug effects , Dendritic Cells/immunology , Epigenesis, Genetic , Female , Gene Expression Regulation, Neoplastic , Humans , Immunotherapy/methods , Interferon-gamma/genetics , Interferon-gamma/immunology , Interferon-gamma/metabolism , Lymphocyte Activation/drug effects , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/immunology , Macrophages/drug effects , Macrophages/immunology , Mice, Inbred C57BL , Ovarian Neoplasms/immunology , Ovarian Neoplasms/pathology , Ovarian Neoplasms/therapy , Paracrine Communication , Receptors, CXCR3/genetics , Receptors, CXCR3/immunology , Receptors, CXCR3/metabolism , Signal Transduction
18.
Clin Cancer Res ; 25(10): 2943-2945, 2019 05 15.
Article in English | MEDLINE | ID: mdl-30837277

ABSTRACT

Immune checkpoint blockade therapy requires a preestablished activated immune landscape. Understanding tumor-intrinsic mechanisms that lead to T-cell desertification is key to resensitizing them to such therapies. The WNT/ß-catenin tumor-intrinsic signaling is emerging as an immune exclusion pathway that holds high promise to counteract resistance to immunotherapy.See related article by Luke et al., p. 3074.


Subject(s)
Neoplasms/immunology , beta Catenin/immunology , Conservation of Natural Resources , Humans , Immunotherapy , Wnt Signaling Pathway
19.
Oncogene ; 38(15): 2814-2829, 2019 04.
Article in English | MEDLINE | ID: mdl-30546090

ABSTRACT

Neoadjuvant and adjuvant chemotherapies provide survival benefits to breast cancer patients, in particular in estrogen receptor negative (ER-) cancers, by reducing rates of recurrences. It is assumed that the benefits of (neo)adjuvant chemotherapy are due to the killing of disseminated, residual cancer cells, however, there is no formal evidence for it. Here, we provide experimental evidence that ER- breast cancer cells that survived high-dose Doxorubicin and Methotrexate based chemotherapies elicit a state of immunological dormancy. Hallmark of this dormant phenotype is the sustained activation of the IRF7/IFN-ß/IFNAR axis subsisting beyond chemotherapy treatment. Upregulation of IRF7 in treated cancer cells promoted resistance to chemotherapy, reduced cell growth and induced switching of the response from a myeloid derived suppressor cell-dominated immune response to a CD4+/CD8+ T cell-dependent anti-tumor response. IRF7 silencing in tumor cells or systemic blocking of IFNAR reversed the state of dormancy, while spontaneous escape from dormancy was associated with loss of IFN-ß production. Presence of IFN-ß in the circulation of ER- breast cancer patients treated with neoadjuvant Epirubicin chemotherapy correlated with a significantly longer distant metastasis-free survival. These findings establish chemotherapy-induced immunological dormancy in ER- breast cancer as a novel concept for (neo)adjuvant chemotherapy activity, and implicate sustained activation of the IRF7/IFN-ß/IFNAR pathway in this effect. Further, IFN-ß emerges as a potential predictive biomarker and therapeutic molecule to improve outcome of ER- breast cancer patients treated with (neo)adjuvant chemotherapy.


Subject(s)
Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Interferon Regulatory Factor-7/metabolism , Interferon Type I/metabolism , Animals , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Biomarkers, Tumor/metabolism , Cell Line, Tumor , Chemotherapy, Adjuvant/methods , Doxorubicin/pharmacology , Epirubicin/pharmacology , Female , Humans , Interferon-beta/metabolism , Methotrexate/pharmacology , Mice , Mice, Inbred BALB C , Mice, Inbred NOD , Mice, Nude , Mice, SCID , Neoadjuvant Therapy/methods , Neoplasm Recurrence, Local/metabolism , Receptor, ErbB-2/metabolism
20.
Mol Cancer Res ; 16(12): 1912-1926, 2018 12.
Article in English | MEDLINE | ID: mdl-30108165

ABSTRACT

Metastases and tumor recurrence have a major prognostic impact in head and neck squamous cell carcinoma (HNSCC); however, cellular models that comprehensively characterize metastatic and recurrent HNSCC are lacking. To this end, we obtained genomic, transcriptomic, and copy number profiles of the UM-SCC cell line panel, encompassing patient-matched metastatic and recurrent cells. UM-SCC cells recapitulate the most prevalent genomic alterations described in HNSCC, featuring common TP53, PI3K, NOTCH, and Hippo pathway mutations. This analysis identified a novel F977Y kinase domain PIK3CA mutation exclusively present in a recurrent cell line (UM-SCC14B), potentially conferring resistance to PI3K inhibitors. Small proline-rich protein 2A (SPRR2A), a protein involved in epithelial homeostasis and invasion, was one of the most consistently downregulated transcripts in metastatic and recurrent UM-SCC cells. Assessment of SPRR2A protein expression in a clinical cohort of patients with HNSCC confirmed common SPRR2A downregulation in primary tumors (61.9% of cases) and lymph node metastases (31.3%), but not in normal tissue. High expression of SPRR2A in lymph node metastases was, along with nonoropharyngeal location of the primary tumor, an independent prognostic factor for regional disease recurrence after surgery and radiotherapy (HR 2.81; 95% CI, 1.16-6.79; P = 0.02). These results suggest that SPRR2A plays a dual role in invasion and therapeutic resistance in HNSCC, respectively through its downregulation and overexpression. IMPLICATIONS: The current study reveals translationally relevant mechanisms underlying metastasis and recurrence in HNSCC and represents an adjuvant tool for preclinical research in this disease setting. Underlining its discovery potential this approach identified a PIK3CA-resistant mutation as well as SPRR2A as possible theragnostic markers.


Subject(s)
Class I Phosphatidylinositol 3-Kinases/genetics , Cornified Envelope Proline-Rich Proteins/genetics , Gene Expression Profiling/methods , Genomics/methods , Head and Neck Neoplasms/genetics , Neoplasm Recurrence, Local/genetics , Squamous Cell Carcinoma of Head and Neck/genetics , Cell Line, Tumor , Class I Phosphatidylinositol 3-Kinases/chemistry , Down-Regulation , Drug Resistance, Neoplasm , Female , Gene Dosage , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Head and Neck Neoplasms/drug therapy , Humans , Male , Mutation , Neoplasm Recurrence, Local/drug therapy , Protein Domains , Sequence Analysis, RNA , Squamous Cell Carcinoma of Head and Neck/drug therapy , Exome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL
...