Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Food Chem ; 458: 140247, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38970955

ABSTRACT

Several food regulatory bodies regard olive oil as highly susceptible to food fraud, largely due to its substantial economic worth. Precise analytical tools are being developed to uncover these types of fraud. This study examines an innovative approach to extract strontium (Sr) from the olive oil matrix (via EDTA complexation and ion-exchange chromatography) and to determine its isotope composition by MC-ICP-MS. This technique was compared to a commonly used technique (i.e. acid extraction and extraction chromatography), and then validated. Three olive oils that are sold in France were prepared and analyzed by two methods: 1) acid extraction prior to Sr purification by Sr-spec resin and 2) complexation by EDTA prior to Sr purification by AG50W-X8. These methods were applied for the determination of the 87Sr/86Sr isotope ratio of 23 olive oils from various countries. We also demonstrated the feasibility of the method for the detection of olive oil mixtures.

2.
J Hazard Mater ; 473: 134699, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38795488

ABSTRACT

Identifying metabolism and detoxification mechanisms of Hg in biota has important implications for biomonitoring, ecotoxicology, and food safety. Compared to marine mammals and waterbirds, detoxification of MeHg in fish is understudied. Here, we investigated Hg detoxification in Atlantic bluefin tuna Thunnus thynnus using organ-specific Hg and Se speciation data, stable Hg isotope signatures, and Hg and Se particle measurements in multiple tissues. Our results provide evidence for in vivo demethylation and biomineralization of HgSe particles, particularly in spleen and kidney. We observed a maximum range of 1.83‰ for δ202Hg between spleen and lean muscle, whereas Δ199Hg values were similar across all tissues. Mean percent methylmercury ranged from 8% in spleen to 90% in lean muscle. The particulate masses of Hg and Se were higher in spleen and kidney (Hg: 61% and 59%, Se: 12% and 6%, respectively) compared to muscle (Hg: 2%, Se: 0.05%). Our data supports the hypothesis of an organ-specific, two-step detoxification of methylmercury in wild marine fish, consisting of demethylation and biomineralization, like reported for waterbirds. While mass dependent fractionation signatures were highly organ specific, stable mass independent fractionation signatures across all tissues make them potential candidates for source apportionment studies of Hg using ABFT.


Subject(s)
Mercury Isotopes , Methylmercury Compounds , Tuna , Water Pollutants, Chemical , Animals , Methylmercury Compounds/metabolism , Methylmercury Compounds/toxicity , Tuna/metabolism , Mercury Isotopes/metabolism , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Kidney/metabolism , Spleen/metabolism , Inactivation, Metabolic , Mercury/metabolism , Mercury/analysis , Environmental Monitoring/methods , Muscles/metabolism , Muscles/chemistry , Selenium/metabolism , Selenium/analysis
3.
Food Chem ; 426: 136487, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37307739

ABSTRACT

The geographical authentication in the agrifood industry has become a major issue to guarantee the quality of food products. Olive oil (OO) is particularly a complex matrix and establishing a reliable approach for linking OO samples to their origin is an analytical challenge. In this study, the isotopic composition of carbon, strontium and the concentrations of seventeen elements were determined in OOs from Tunisia, Southern France and the South Basque country. The preliminary results overlapped and showed that, taken individually, the isotopic and elemental approaches were not discriminant. A linear discriminant analysis applied to δ13C, 87Sr/86Sr and to the concentrations of 4 selected trace elements (Fe, Mn, V and Cr) allowed to classify, with high resolution, olive oils into 3 groups according to their provenance. The combination of the plant growing environment, the geological background, the mineral composition of the soil and the production process lead to a novel approach to deal with fraudulent practices in OO sector.


Subject(s)
Trace Elements , Olive Oil , Carbon Isotopes/analysis , Trace Elements/analysis , Strontium/analysis , France , Strontium Isotopes/analysis , Isotopes/analysis
4.
Phys Rev E ; 107(5-1): 054203, 2023 May.
Article in English | MEDLINE | ID: mdl-37328987

ABSTRACT

In a Vlasov equation, the destabilization of a homogeneous stationary state is typically described by a continuous bifurcation characterized by strong resonances between the unstable mode and the continuous spectrum. However, when the reference stationary state has a flat top, it is known that resonances drastically weaken and the bifurcation becomes discontinuous. In this article we analyze one-dimensional spatially periodic Vlasov systems, using a combination of analytical tools and precise numerical simulations to demonstrate that this behavior is related to a codimension-two bifurcation, which we study in detail.

5.
Food Chem ; 423: 136271, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37167668

ABSTRACT

High value food products are subject to adulterations and frauds. This study aimed to combine, in our knowledge for the first time, inorganic chemical tracers (multi-elements and Sr isotopy) with volatile organic compound (VOCs) to discriminate the geographic origin, the varieties and transformation processes to authenticate 26 tea samples. By measuring Sr isotope ratio using the multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS), 6 out of 11 regions were successfully discriminated. The combination with the ICP-MS inorganic pattern allowed to discriminate 4 more regions with a significance level of 0.05. VOCs fingerprints, obtained with selected ion flow tube mass spectrometer (SIFT-MS), were not correlated with origin but with the cultivar and transformation processes. Green, oolong, and dark teas were clearly differentiated, with hexanal and hexanol contributing to the discrimination of oxidation levels. With this multi-instrumental approach, it is possible to certify the geographical origin and the tea conformity.


Subject(s)
Strontium Isotopes , Volatile Organic Compounds , Strontium Isotopes/analysis , Mass Spectrometry/methods , Spectrum Analysis , Isotopes/chemistry , Volatile Organic Compounds/analysis , Tea/chemistry
6.
Talanta ; 234: 122433, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34364413

ABSTRACT

Wine is one of the most counterfeit product and therefore, requires certifying of its origin and provenance. For authentication purposes, analytical strategies for the determination of Sr and Pb isotopic ratios were adapted for Champagne and sparkling wines. All analytical steps have been carefully adapted and optimized regarding sample preparation, mineralization, and purification by resins as well as isotopic composition measurements on 3 different MC ICP-MS instruments. Further, a global approach using an "in-house" reference material of Champagne (ChRM) was realized and used throughout as well as routine analytical conditions to guaranty samples isotopic quality determination over 3 years. These developments allowed to select the best conditions at all steps for reaching the best precision and accuracy to be used under routine conditions for samples origin discrimination. The best condition of mineralization was obtained with a hot block system allowing both efficiency in digestion and high sample throughput. Detailed conditions of purification for both Sr and Pb isotopes were also optimized and discussed. These different optimization steps on the whole analytical chain allowed to estimate a global precision suitable to be used routinely to discriminate the origin of different Champagne samples. For Sr isotopic analysis (87Sr/86Sr), the overall external precision based on preparation replicates of ChRM was 2σ = 0.000024 (n = 36) and for the Pb isotopes analysis (208Pb/206Pb), the precision obtained on ChRM was 2σ = 0.0024 (n = 15). Finally, we have applied these developments by combining both Sr and Pb isotopic ratios in order to discriminate the origin of sparkling wines from around the world. The combined isotopic signature, using both Sr and Pb isotopes ratios, permitted a clear discrimination between certified Champagne wines and other European and Non-European sparkling wines.


Subject(s)
Wine , Isotopes/analysis , Lead , Spectrum Analysis , Wine/analysis
7.
Molecules ; 26(16)2021 Aug 23.
Article in English | MEDLINE | ID: mdl-34443696

ABSTRACT

The 87Sr/86Sr ratio of 39 Champagnes from six different brands, originating from the whole "Appellation d'Origine Contrôlée" (AOC) Champagne was analyzed to establish a possible relation with the geographical origin. Musts (i.e., grape juice) and base wines were also analyzed to study the evolution of the Sr isotopic ratio during the elaboration process of sparkling wine. The results demonstrate that there is a very homogeneous Sr isotopic ratio (87Sr/86Sr = 0.70812, n = 37) and a narrow span of variability (2σ = 0.00007, n = 37). Moreover, the Sr concentrations in Champagnes have also low variability, which can be in part explained by the homogeneity of the bedrock in the AOC Champagne. Measurements of the 87Sr/86Sr ratio from musts and base wines show that blending during Champagne production plays a major role in the limited variability observed. Further, the 87Sr/86Sr of the musts were closely linked to the 87Sr/86Sr ratio of the vineyard soil. It appears that the 87Sr/86Sr of the product does not change during the elaboration process, but its variability decreases throughout the process due to blending. Both the homogeneity of the soil composition in the Champagne AOC and the blending process during the wine making process with several blending steps at different stages account for the unique and stable Sr isotopic signature of the Champagne wines.


Subject(s)
Strontium Isotopes/analysis , Wine/analysis , Geography , Time Factors , Vitis/chemistry
8.
Chemosphere ; 279: 130631, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34134422

ABSTRACT

The Hg isotopic composition of 1-year-old Norway spruce (Picea abies) shoots collected from Saarland cornurbation Warndt, Germany, since 1985 by the German Environmental Specimen Bank, were measured for a better understanding of the temporal trends of Hg sources. The isotopic data showed that Hg was mainly taken up as gaseous element mercury (GEM) and underwent oxidation in the spruce needles; this led to a significant decrease in the δ202Hg compared with the atmospheric Hg isotopic composition observed for deciduous leaves and epiphytic lichens. Observation of the odd mass-independent isotopic fractionation (MIF) indicated that Δ199Hg and Δ201Hg were close to but slightly lower than the actual values recorded from the atmospheric measurement of the GEM isotopic composition in non-contaminated sites in U.S. and Europe, whereas observation of the even-MIF indicated almost no differences for Δ200Hg. This confirmed that GEM is a major source of Hg accumulation in spruce shoots. Interestingly, the Hg isotopic composition in the spruce shoots did not change very significantly during the study period of >30 years, even as the Hg concentration decreased significantly. Even-MIF (Δ200Hg) and mass-dependent fractionation (MDF) (δ202Hg) of the Hg isotopes exhibited slight decrease with time, whereas odd-MIF did not show any clear trend. These results suggest a close link between the long-term evolution of GEM isotopic composition in the air and the isotopic composition of bioaccumulated Hg altered by mass-dependent fraction in the spruce shoots.


Subject(s)
Mercury , Picea , Environmental Monitoring , Europe , Germany , Mercury/analysis , Mercury Isotopes/analysis , Norway
9.
Anal Bioanal Chem ; 412(19): 4483-4493, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32424796

ABSTRACT

An interlaboratory study on the National Institute for Environmental Studies (NIES) certified reference material (CRM) No. 28 Urban Aerosols, collected on the filters of a central ventilating system in a building in Beijing city center, was performed to obtain informative values of Hg isotopic composition and total Hg (THg) mass fraction. The THg mass fraction was determined by four organizations using atomic absorption spectrometry; it resulted in the mean value of 1.19 ± 0.12 mg/kg (2SD, n = 24). The Hg isotopic composition of the CRM was measured and intercompared at two different institutions by cold vapor generation system coupled to multicollector inductively coupled plasma mass spectrometry. Subsequently, a conventional dissolution method that uses a mixture of HNO3/HCl/H2O2 in Hotblock® and two different dissolution methods that use a mixture of HNO3/HCl with a microwave and a digestion bomb were applied. The Hg isotopic compositions were δ202Hg = - 1.26 ± 0.17‰, Δ199Hg = - 0.23 ± 0.06‰, Δ200Hg = 0.01 ± 0.07‰, and Δ201Hg = - 0.22 ± 0.09‰ (2SD, n = 18) for the conventional method, which agree well with those obtained using microwave and bomb digestion. Our results indicate that, for the quality control of particulate matter analyses, this CRM is appropriate for use in environmental and geochemical studies. Graphical abstract.

10.
Food Chem ; 303: 125277, 2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31473460

ABSTRACT

Lead concentrations and lead isotope ratios of 43 authentic Bordeaux wines from prestigious châteaux and 14 suspicious Bordeaux origin were determined to evaluate their potential for authenticity and geographical origin assessment. Results have shown that the total Pb concentrations in Bordeaux wines drastically decreased over the previous 50 years with a clear shift of isotopic signatures towards geogenic values corresponding to an overall trend of European environmental lead monitoring. The Pb isotopic ratios determined in both series of samples clearly demonstrated that suspicious Bordeaux wines displayed Pb isotopic signatures statistically distinctive from those obtained for authentic wines. This observation was confirmed by the three-isotope mixing lines obtained between the geogenic and the anthropogenic Pb isotopes data that characterize European and Asian sources. The use these specific three-isotope plots allows a non-ambiguous discrimination between authentic Pauillac AOC and the counterfeited ones.


Subject(s)
Food Quality , Geography , Lead/analysis , Lead/chemistry , Wine/analysis , Fraud , Isotopes
11.
Environ Pollut ; 243(Pt B): 961-971, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30248603

ABSTRACT

Multi-elemental isotopic approach associated with a land-use characteristic sampling strategy may be relevant for conducting biomonitoring studies to determine the spatial extent of atmospheric contamination sources. In this work, we investigated how the combined isotopic signatures in epiphytic lichens of two major metallic pollutants, lead (206Pb/207Pb) and mercury (δ202Hg, Δ199Hg), together with the isotopic composition of nitrogen and carbon (δ15N, δ13C), can be used to better constrain atmospheric contamination inputs. To this end, an intensive and integrated sampling strategy based on land-use characteristics (Geographic information system, GIS) over a meso-scale area (Pyrénées-Atlantiques, SW France) was applied to more than 90 sampling stations. To depict potential relationships between such multi-elemental isotopic fingerprint and land-use characteristics, multivariate analysis was carried out. Combined Pb and Hg isotopic signatures resolved spatially the contribution of background atmospheric inputs from long range transport, from local legacy contamination (i.e. Pb) or actual industrial inputs (i.e. Pb and Hg from steel industry). Application of clustering multivariate analysis to all studied isotopes provided a new assessment of the region in accordance with the land-use characteristics and anthropogenic pressures.


Subject(s)
Environmental Monitoring/methods , Environmental Pollutants/analysis , Lead/analysis , Lichens/chemistry , Mercury/analysis , Carbon/analysis , Environmental Pollution , France , Geographic Information Systems , Isotopes , Nitrogen/analysis , Steel
12.
Environ Sci Pollut Res Int ; 25(26): 26653-26668, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30003484

ABSTRACT

Southeast Asia is a hotspot of anthropogenic emissions where episodes of recurrent and prolonged atmospheric pollution can lead to the formation of large haze events, giving rise to wide plumes which spread over adjacent oceans and neighbouring countries. Trace metal concentrations and Pb isotopic ratios in atmospheric particulate matter < 10 µm (PM10) were used to track the origins and the transport pathways of atmospheric pollutants. This approach was used for fortnightly PM10 collections over a complete annual cycle in Haiphong, northern Vietnam. Distinct seasonal patterns were observed for the trace metal concentration in PM10, with a maximum during the Northeast (NE) monsoon and a minimum during the Southeast (SE) monsoon. Some elements (As, Cd, Mn) were found in excess according to the World Health Organization guidelines. Coal combustion was highlighted with enrichment factors of As, Cd, Se, and Sb, but these inputs were outdistanced by other anthropogenic activities. V/Ni and Cu/Sb ratios were found to be markers of oil combustion, while Pb/Cd and Zn/Pb ratios were found to be markers of industrial activities. Pb isotopic composition in PM10 revealed an important contribution of soil dusts (45-60%). In PM10, the Pb fraction due to oil combustion was correlated with dominant airflow pathways (31% during the north-easterlies and 20% during the south-easterlies), and the Pb fraction resulting from industrial emissions was stable (around 28%) throughout the year. During the SE monsoon, Pb inputs were mainly attributed to resuspension of local soil dusts (about 90%), and during the NE monsoon, the increase of Pb inPM10 was due to the mixing of local and regional inputs.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring/methods , Lead/administration & dosage , Metalloids/analysis , Metals, Heavy/analysis , Particulate Matter/analysis , Atmosphere/chemistry , Industry , Isotopes/analysis , Oceans and Seas , Particle Size , Vietnam
13.
Environ Sci Technol ; 52(7): 4227-4234, 2018 04 03.
Article in English | MEDLINE | ID: mdl-29514456

ABSTRACT

Blood and feathers are the two most targeted avian tissues for environmental biomonitoring studies, with mercury (Hg) concentration in blood and body feathers reflecting short and long-term Hg exposure, respectively. In this work, we investigated how Hg isotopic composition (e.g., δ202Hg and Δ199Hg) of blood and feathers from either seabird chicks (skuas, n = 40) or adults (penguins, n = 62) can accurately provide information on exposure to Hg in marine ecosystems. Our results indicate a strong correlation between blood and feather Hg isotopic values for skua chicks, with similar δ202Hg and Δ199Hg values in the two tissues (mean difference: -0.01 ± 0.25 ‰ and -0.05 ± 0.12 ‰, respectively). Since blood and body feathers of chicks integrate the same temporal window of Hg exposure, this suggests that δ202Hg and Δ199Hg values can be directly compared without any correction factors within and between avian groups. Conversely, penguin adults show higher δ202Hg and Δ199Hg values in feathers than in blood (mean differences: 0.28 ± 0.19‰ and 0.25 ± 0.13‰), most likely due to tissue-specific Hg temporal integration. Since feathers integrate long-term (i.e., the intermoult period) Hg accumulation, whereas blood reflects short-term (i.e., seasonal) Hg exposure in adult birds, the two tissues provide complementary information on trophic ecology at different time scales.


Subject(s)
Feathers , Mercury , Animals , Ecosystem , Environmental Monitoring , Food Chain
14.
Environ Sci Technol ; 51(21): 12219-12228, 2017 Nov 07.
Article in English | MEDLINE | ID: mdl-28942649

ABSTRACT

Our study reports the first data on mercury (Hg) isotope composition in marine European fish, for seven distinct populations of the European seabass, Dicentrarchus labrax. The use of δ202Hg and Δ199Hg values in SIBER enabled us to estimate Hg isotopic niches, successfully discriminating several populations. Recursive-partitioning analyses demonstrated the relevance of Hg stable isotopes as discriminating tools. Hg isotopic values also provided insight on Hg contamination sources for biota in coastal environment. The overall narrow range of δ202Hg around Europe was suggested to be related to a global atmospheric contamination while δ202Hg at some sites was linked either to background contamination, or with local contamination sources. Δ199Hg was related to Hg levels of fish but we also suggest a relation with ecological conditions. Throughout this study, results from the Black Sea population stood out, displaying a Hg cycling similar to fresh water lakes. Our findings bring out the possibility to use Hg isotopes in order to discriminate distinct populations, to explore the Hg cycle on a large scale (Europe) and to distinguish sites contaminated by global versus local Hg source. The interest of using Hg sable isotopes to investigate the whole European Hg cycle is clearly highlighted.


Subject(s)
Bass , Mercury Isotopes , Animals , Black Sea , Environmental Monitoring , Europe , Isotopes , Mercury , Water Pollutants, Chemical
15.
Chemosphere ; 147: 430-8, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26774309

ABSTRACT

Variations in mercury (Hg) isotopic compositions have been scarcely investigated until now in the Almadén mining district (Spain), which is one of the most impacted Hg areas worldwide. In this work, we explore and compare Hg isotopic signatures in sediments and lichens from Almadén mining district and its surroundings in order to identify and trace Hg aquatic and atmospheric contamination sources. No statistically significant mass independent fractionation was observed in sediments, while negative Δ(201)Hg values from -0.12 to -0.21‰ (2SD = 0.06‰) were found in lichens. A large range of δ(202)Hg values were reported in sediments, from -1.86 ± 0.21‰ in La Serena Reservoir sites far away from the pollution sources to δ(202)Hg values close to zero in sediments directly influenced by Almadén mining district, whereas lichens presented δ(202)Hg values from -1.95 to -0.40‰ (2SD = 0.15‰). A dilution or mixing trend in Hg isotope signatures versus the distance to the mine was found in sediments along the Valdeazogues River-La Serena Reservoir system and in lichens. This suggests that Hg isotope fingerprints in these samples are providing a direct assessment of Hg inputs and exposure from the mining district, and potential information on diffuse atmospheric contamination and/or geochemical alteration processes in less contaminated sites over the entire hydrosystem. This study confirms the applicability of Hg isotope signatures in lichens and sediments as an effective and complementary tool for tracing aquatic and atmospheric Hg contamination sources and a better constraint of the spatial and temporal fate of Hg released by recent or ancient mining activities.


Subject(s)
Environmental Pollutants/analysis , Geologic Sediments/analysis , Lichens/chemistry , Mercury Isotopes/analysis , Environmental Monitoring , Mining , Rivers/chemistry , Spain
16.
Environ Sci Technol ; 49(21): 12984-93, 2015 Nov 03.
Article in English | MEDLINE | ID: mdl-26398726

ABSTRACT

An original approach is proposed to investigate inorganic (iHg) and methylmercury (MeHg) trophic transfer and fate in a model fish, Danio rerio, by combining natural isotopic fractionation and speciation. Animals were exposed to three different dietary conditions: (1) 50 ng Hg g(-1), 80% as MeHg; (2) diet enriched in MeHg 10,000 ng Hg g(-1), 95% as MeHg, and (3) diet enriched in iHg 10,000 ng Hg g(-1), 99% as iHg. Harvesting was carried out after 0, 7, 25, and 62 days. Time-dependent Hg species distribution and isotopic fractionation in fish organs (muscle, brain, liver) and feces, exhibited different patterns, as a consequence of their dissimilar metabolization. The rapid isotopic re-equilibration to the new MeHg-food source reflects its high bioaccumulation rate. Relevant aspects related to Hg excretion are also described. This study confirms Hg isotopic fractionation as a powerful tool to investigate biological processes, although its deconvolution and fully understanding is still a challenge.


Subject(s)
Diet , Environmental Monitoring , Mercury/analysis , Methylmercury Compounds/analysis , Zebrafish/metabolism , Animals , Brain/metabolism , Feces/chemistry , Liver/metabolism , Mercury Isotopes , Muscles/metabolism
17.
Environ Sci Pollut Res Int ; 22(11): 8536-48, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25561253

ABSTRACT

Geographically based investigations into atmospheric bio-monitoring usually provide information on concentration or occurrence data and spatial trends of specific contaminants over a specified study area. In this work, an original approach based on geographic information system (GIS) was used to establish metal contents (Hg, Cu, Pb, and Cd) in epiphytic lichens from 90 locations as atmospheric bio-monitors over a meso-scale area (Pyrénées-Atlantiques, southwestern France). This approach allows the integration of the heterogeneity of the territory and optimization of the sampling sites based on both socioeconomical and geophysical parameters (hereafter defined as urban, industrial, agricultural, and forested areas). The sampling strategy was first evaluated in several sites (n = 15) over different seasons and years in order to follow the temporal variability of the atmospheric metal input in lichens. The results demonstrate that concentration ranges remain constant over different sampling periods in "rural" areas (agricultural and forested). Higher variability is observed in the "anthropized" urban and industrial areas in relation to local atmospheric inputs. In this context, metal concentrations in lichens over the whole study show that (1) Hg and Cd are homogeneous over the whole territory (0.14 ± 0.04 and 0.38 ± 0.26 mg/kg, respectively), whereas (2) Cu and Pb are more concentrated in "anthropized" areas (9.3 and 11.9 mg/kg, respectively) than in "rural" ones (6.8 and 6.0 mg/kg, respectively) (Kruskall-Wallis, K(Cu) = 13.7 and K(Pb) = 9.7, p < 0.00001). They also showed a significant local enrichment for all metals in many locations in the Pays Basque (West) mainly due to metal and steel industrial activities. This confirms the local contribution of this contamination source over a wider geographic scale. A multiple linear regression model was applied to give an integrated spatialization of the data. This showed significant relationships for Pb and Cu (adjusted r (2) of 0.39 and 0.45, respectively), especially with regards to variables such as industry and road densities (source factors) and elevation or water balance (remote factors). These results show that an integrated GIS-based sampling strategy can improve biomonitoring data distribution and allows better differentiation of local and long-range contamination.


Subject(s)
Air Pollutants/analysis , Atmosphere/chemistry , Environmental Monitoring/methods , Lichens/metabolism , Metals, Heavy/analysis , Air Pollutants/pharmacokinetics , Environmental Monitoring/statistics & numerical data , France , Geographic Information Systems , Linear Models , Mass Spectrometry , Metals, Heavy/pharmacokinetics , Socioeconomic Factors , Spectrophotometry, Atomic , Statistics, Nonparametric
18.
Article in English | MEDLINE | ID: mdl-25019879

ABSTRACT

A phenomenological theory is proposed to analyze the asymptotic dynamics of perturbed inviscid Kolmogorov shear flows in two dimensions. The phase diagram provided by the theory is in qualitative agreement with numerical observations, which include three phases depending on the aspect ratio of the domain and the size of the perturbation: a steady shear flow, a stationary dipole, and four traveling vortices. The theory is based on a precise study of the inviscid damping of the linearized equation and on an analysis of nonlinear effects. In particular, we show that the dominant Landau pole controlling the inviscid damping undergoes a bifurcation, which has important consequences on the asymptotic fate of the perturbation.


Subject(s)
Models, Theoretical , Computer Simulation , Linear Models , Motion , Nonlinear Dynamics
19.
Phys Rev E Stat Nonlin Soft Matter Phys ; 79(3 Pt 2): 036208, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19392036

ABSTRACT

Long-lasting small traveling clusters are studied in the Hamiltonian mean-field model by comparing between attractive and repulsive interactions. Nonlinear Landau damping theory predicts that a Gaussian momentum distribution on a spatially homogeneous background permits the existence of traveling clusters in the repulsive case, as in plasma systems, but not in the attractive case. Nevertheless, extending the analysis to a two-parameter family of momentum distributions of Fermi-Dirac type, we theoretically predict the existence of traveling clusters in the attractive case; these findings are confirmed by direct N -body numerical simulations. The parameter region with the traveling clusters is much reduced in the attractive case with respect to the repulsive case.

20.
Phys Rev Lett ; 103(22): 224301, 2009 Nov 27.
Article in English | MEDLINE | ID: mdl-20366096

ABSTRACT

We study the breathing mode in systems of trapped interacting particles. Our approach, based on a dynamical ansatz in the first equation of the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy allows us to tackle at once a wide range of power-law interactions and interaction strengths, at linear and nonlinear levels. This both puts in a common framework various results scattered in the literature, and by widely generalizing these, emphasizes universal characters of this breathing mode. Our findings are supported by direct numerical simulations.

SELECTION OF CITATIONS
SEARCH DETAIL
...