Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Complement Med Ther ; 24(1): 49, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38254071

ABSTRACT

BACKGROUND: The continuous evolution of drug-resistant influenza viruses highlights the necessity for repurposing naturally-derived and safe phytochemicals with anti-influenza activity as novel broad-spectrum anti-influenza medications. METHODS: In this study, nitrogenous alkaloids were tested for their viral inhibitory activity against influenza A/H1N1 and A/H5N1 viruses. The cytotoxicity of tested alkaloids on MDCK showed a high safety range (CC50 > 200 µg/ml), permitting the screening for their anti-influenza potential. RESULTS: Herein, atropine sulphate, pilocarpine hydrochloride and colchicine displayed anti-H5N1 activities with IC50 values of 2.300, 0.210 and 0.111 µg/ml, respectively. Validation of the IC50 values was further depicted by testing the three highly effective alkaloids, based on their potent IC50 values against seasonal influenza A/H1N1 virus, showing comparable IC50 values of 0.204, 0.637 and 0.326 µg/ml, respectively. Further investigation suggests that colchicine could suppress viral infection by primarily interfering with IAV replication and inhibiting viral adsorption, while atropine sulphate and pilocarpine hydrochloride could directly affect the virus in a cell-free virucidal effect. Interestingly, the in silico molecular docking studies suggest the abilities of atropine, pilocarpine, and colchicine to bind correctly inside the active sites of the neuraminidases of both influenza A/H1N1 and A/H5N1 viruses. The three alkaloids exhibited good binding energies as well as excellent binding modes that were similar to the co-crystallized ligands. On the other hand, consistent with in vitro results, only colchicine could bind correctly against the M2-proton channel of influenza A viruses (IAVs). This might explicate the in vitro antiviral activity of colchicine at the replication stage of the virus replication cycle. CONCLUSION: This study highlighted the anti-influenza efficacy of biologically active alkaloids including colchicine. Therefore, these alkaloids should be further characterized in vivo (preclinical and clinical studies) to be developed as anti-IAV agents.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A Virus, H5N1 Subtype , Influenza A virus , Influenza, Human , Humans , Colchicine/pharmacology , Pilocarpine , Influenza, Human/drug therapy , Molecular Docking Simulation , Seasons , Phytochemicals/pharmacology , Atropine , Antiviral Agents/pharmacology
2.
J Virol ; 98(2): e0157123, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38206036

ABSTRACT

In pandemic scenarios involving novel human pathogenic viruses, it is highly desirable that vaccines induce strong neutralizing antibodies as quickly as possible. However, current vaccine strategies require multiple immunization doses to produce high titers of neutralizing antibodies and are poorly protective after a single vaccination. We therefore wished to design a vaccine candidate that would induce increased protective immune responses following the first vaccine dose. We hypothesized that antibodies against the receptor-binding domain (RBD) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike glycoprotein could be increased by drawing upon immunity to a previous infection. We generated a fusion protein containing the influenza H1N1 PR8 virus nucleoprotein (NP) and the SARS-CoV-2 spike RBD. Mice with or without preexisting immunity to PR8 were then vaccinated with NP/RBD. We observed significantly increased SARS-CoV-2 neutralizing antibodies in mice with PR8 immunity compared to mice without preexisting PR8 immunity. Vaccination with NP/RBD protected mice from SARS-CoV-2-induced morbidity and mortality after a single dose. Additionally, we compared SARS-CoV-2 virus titers in the lungs and nasal turbinates 4 days post-challenge of mice vaccinated with NP/RBD. SARS-CoV-2 virus was detectable in the lungs and nasal turbinate of mice without preexisting PR8 immunity, while SARS-CoV-2 virus was completely undetectable in mice with preexisting PR8 immunity. We also found that CD4-positive T cells in mice with preexisting immunity to PR8 play an essential role in producing the increased antibody response against RBD. This vaccine strategy potentially can be modified to target other pathogens of concern and offers extra value in future pandemic scenarios.IMPORTANCEIncreased globalization and changes in human interactions with wild animals has increased the likelihood of the emergence of novel viruses with pandemic potential. Vaccines can be effective in preventing severe disease caused by pandemic viruses. However, it takes time to develop protective immunity via prime-boost vaccination. More effective vaccine designs should quickly induce protective immunity. We propose leveraging preexisting immunity to a different pathogen to boost protection against emerging viruses. We targeted SARS-CoV-2 as a representative pandemic virus and generated a fusion protein vaccine that combines the nucleoprotein from influenza A virus and the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein. Our vaccine design significantly increased the production of RBD-specific antibodies in mice that had previously been exposed to influenza virus, compared to those without previous exposure. This enhanced immunity reduced SARS-CoV-2 replication in mice. Our results offer a vaccine design that could be valuable in a future pandemic setting.


Subject(s)
COVID-19 Vaccines , Influenza Vaccines , Animals , Humans , Mice , Antibodies, Neutralizing , Antibodies, Viral , Antibody Formation , COVID-19/immunology , COVID-19/prevention & control , Influenza A Virus, H1N1 Subtype/physiology , Influenza Vaccines/immunology , Nucleoproteins , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/chemistry , COVID-19 Vaccines/immunology , Influenza, Human/immunology , Influenza, Human/prevention & control
3.
Sci Adv ; 9(51): eadh8310, 2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38134275

ABSTRACT

Environmental influences on immune phenotypes are well-documented, but our understanding of which elements of the environment affect immune systems, and how, remains vague. Behaviors, including socializing with others, are central to an individual's interaction with its environment. We therefore tracked behavior of rewilded laboratory mice of three inbred strains in outdoor enclosures and examined contributions of behavior, including associations measured from spatiotemporal co-occurrences, to immune phenotypes. We found extensive variation in individual and social behavior among and within mouse strains upon rewilding. In addition, we found that the more associated two individuals were, the more similar their immune phenotypes were. Spatiotemporal association was particularly predictive of similar memory T and B cell profiles and was more influential than sibling relationships or shared infection status. These results highlight the importance of shared spatiotemporal activity patterns and/or social networks for immune phenotype and suggest potential immunological correlates of social life.


Subject(s)
Immune System , Social Behavior , Mice , Animals , Phenotype
4.
Sci Immunol ; 8(84): eadd6910, 2023 06 23.
Article in English | MEDLINE | ID: mdl-37352372

ABSTRACT

The paucity of blood granulocyte populations such as neutrophils in laboratory mice is a notable difference between this model organism and humans, but the cause of this species-specific difference is unclear. We previously demonstrated that laboratory mice released into a seminatural environment, referred to as rewilding, display an increase in blood granulocytes that is associated with expansion of fungi in the gut microbiota. Here, we find that tonic signals from fungal colonization induce sustained granulopoiesis through a mechanism distinct from emergency granulopoiesis, leading to a prolonged expansion of circulating neutrophils that promotes immunity. Fungal colonization after either rewilding or oral inoculation of laboratory mice with Candida albicans induced persistent expansion of myeloid progenitors in the bone marrow. This increase in granulopoiesis conferred greater long-term protection from bloodstream infection by gram-positive bacteria than by the trained immune response evoked by transient exposure to the fungal cell wall component ß-glucan. Consequently, introducing fungi into laboratory mice may restore aspects of leukocyte development and provide a better model for humans and free-living mammals that are constantly exposed to environmental fungi.


Subject(s)
Granulocytes , Hematopoiesis , Mice , Humans , Animals , Neutrophils , Candida albicans , Bone Marrow , Mammals
5.
bioRxiv ; 2023 May 02.
Article in English | MEDLINE | ID: mdl-36993484

ABSTRACT

The relative and synergistic contributions of genetics and environment to inter-individual immune response variation remain unclear, despite its implications for understanding both evolutionary biology and medicine. Here, we quantify interactive effects of genotype and environment on immune traits by investigating three inbred mouse strains rewilded in an outdoor enclosure and infected with the parasite, Trichuris muris. Whereas cytokine response heterogeneity was primarily driven by genotype, cellular composition heterogeneity was shaped by interactions between genotype and environment. Notably, genetic differences under laboratory conditions can be decreased following rewilding, and variation in T cell markers are more driven by genetics, whereas B cell markers are driven more by environment. Importantly, variation in worm burden is associated with measures of immune variation, as well as genetics and environment. These results indicate that nonheritable influences interact with genetic factors to shape immune variation, with synergistic impacts on the deployment and evolution of defense mechanisms.

6.
Sci Rep ; 11(1): 17490, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34471147

ABSTRACT

Animal models are often used to assess the airborne transmissibility of various pathogens, which are typically assumed to be carried by expiratory droplets emitted directly from the respiratory tract of the infected animal. We recently established that influenza virus is also transmissible via "aerosolized fomites," micron-scale dust particulates released from virus-contaminated surfaces (Asadi et al. in Nat Commun 11(1):4062, 2020). Here we expand on this observation, by counting and characterizing the particles emitted from guinea pig cages using an Aerodynamic Particle Sizer (APS) and an Interferometric Mie Imaging (IMI) system. Of over 9000 airborne particles emitted from guinea pig cages and directly imaged with IMI, none had an interference pattern indicative of a liquid droplet. Separate measurements of the particle count using the APS indicate that particle concentrations spike upwards immediately following animal motion, then decay exponentially with a time constant commensurate with the air exchange rate in the cage. Taken together, the results presented here raise the possibility that a non-negligible fraction of airborne influenza transmission events between guinea pigs occurs via aerosolized fomites rather than respiratory droplets, though the relative frequencies of these two routes have yet to be definitively determined.


Subject(s)
Aerosols/adverse effects , Fomites/virology , Orthomyxoviridae Infections/transmission , Orthomyxoviridae/growth & development , Animals , Guinea Pigs , Orthomyxoviridae Infections/virology
7.
Nat Commun ; 11(1): 4062, 2020 08 18.
Article in English | MEDLINE | ID: mdl-32811826

ABSTRACT

Influenza viruses are presumed, but not conclusively known, to spread among humans by several possible routes. We provide evidence of a mode of transmission seldom considered for influenza: airborne virus transport on microscopic particles called "aerosolized fomites." In the guinea pig model of influenza virus transmission, we show that the airborne particulates produced by infected animals are mainly non-respiratory in origin. Surprisingly, we find that an uninfected, virus-immune guinea pig whose body is contaminated with influenza virus can transmit the virus through the air to a susceptible partner in a separate cage. We further demonstrate that aerosolized fomites can be generated from inanimate objects, such as by manually rubbing a paper tissue contaminated with influenza virus. Our data suggest that aerosolized fomites may contribute to influenza virus transmission in animal models of human influenza, if not among humans themselves, with important but understudied implications for public health.


Subject(s)
Fomites , Influenza A virus , Influenza, Human/transmission , Influenza, Human/virology , Particulate Matter , Aerosols , Animals , Disease Models, Animal , Female , Guinea Pigs , Humans , Influenza A Virus, H3N2 Subtype , Orthomyxoviridae Infections/virology , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL
...