Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
J Chem Phys ; 160(14)2024 Apr 14.
Article in English | MEDLINE | ID: mdl-38591678

ABSTRACT

Despite the importance of the one-particle picture provided by the orbital paradigm, a rigorous understanding of the spatial distribution of electrons in molecules is still of paramount importance to chemistry. Considerable progress has been made following the introduction of topological approaches, capable of partitioning space into chemically meaningful regions. They usually provide atomic partitions, for example, through the attraction basins of the electron density in the quantum theory of atoms in molecules (QTAIM) or electron-pair decompositions, as in the case of the electron localization function (ELF). In both cases, the so-called electron distribution functions (EDFs) provide a rich statistical description of the electron distribution in these spatial domains. Here, we take the EDF concept to a new fine-grained limit by calculating EDFs in the QTAIM ∩ ELF intersection domains. As shown in AHn systems based on main group elements, as well as in the CO, NO, and BeO molecules, this approach provides an exquisitely detailed picture of the electron distribution in molecules, allowing for an insightful combination of the distribution of electrons between Lewis entities (such as bonds and lone pairs) and atoms at the same time. Besides mean-field calculations, we also explore the impact of electron correlation through Hartree-Fock (HF), density functional theory (DFT) (B3LYP), and CASSCF calculations.

2.
Dalton Trans ; 52(14): 4585-4594, 2023 Apr 04.
Article in English | MEDLINE | ID: mdl-36928731

ABSTRACT

The novel P-N ligand 1-((diphenylphosphaneyl)methyl)-1H-benzo-1,2,3-triazole (1), based on a benzotriazole scaffold, has been prepared. The reaction of 1 with [CoCp*(CH3CN)3][BF4]2 and [CoCp*(I)2]2 (Cp* = pentamethylcyclopentadienyl) affords the chelate complexes [CoCp*(CH3CN)(P-N)][BF4]2 (2) and [CoCp*(I)(P-N)]I (3), respectively. Complexes 2 and 3 were studied as catalysts in the fluorination of aromatic and aliphatic acyl chlorides in CH2Cl2, with 3 showing notably higher activities than 2. Subsequently, organic carbonates (dimethyl carbonate and propylene carbonate) were also employed as solvents, which led to shorter reaction times and to the broadening of the substrate scope to a variety of aliphatic halides. Comparative studies between 3 and the analogous complex [CoCp*(I)2(PMePh2)], which features a monodentate phosphane ligand, showed that higher yields were obtained in the case of the former. DFT calculations and experimental studies were performed in order to shed light on the reaction mechanism, which entails the formation of a cobalt fluoride species that reacts via nucleophilic attack with the substrate to afford the corresponding fluorinated compounds.

3.
Int J Mol Sci ; 24(1)2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36614312

ABSTRACT

Catalytic systems based on sub-nanoclusters deposited over different supports are promising for very relevant chemical transformations such as many electrocatalytic processes as the ORR. These systems have been demonstrated to be very fluxional, as they are able to change shape and interconvert between each other either alone or in the presence of adsorbates. In addition, an accurate representation of their catalytic activity requires the consideration of ensemble effects and not a single structure alone. In this sense, a reliable theoretical methodology should assure an accurate and extensive exploration of the potential energy surface to include all the relevant structures and with correct relative energies. In this context, we applied DFT in conjunction with global optimization techniques to obtain and analyze the characteristics of the many local minima of Pt6 sub-nanoclusters over a carbon-based support (graphene)-a system with electrocatalytic relevance. We also analyzed the magnetism and the charge transfer between the clusters and the support and paid special attention to the dependence of dispersion effects on the ensemble characteristics. We found that the ensembles computed with and without dispersion corrections are qualitatively similar, especially for the lowest-in-energy clusters, which we attribute to a (mainly) covalent binding to the surface. However, there are some significant variations in the relative stability of some clusters, which would significantly affect their population in the ensemble composition.


Subject(s)
Graphite , Carbon , Catalysis
4.
Molecules ; 27(18)2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36144774

ABSTRACT

The somewhat elusive concept of aromaticity plays an undeniable role in the chemical narrative, often being considered the principal cause of the unusual properties and stability exhibited by certain π skeletons. More recently, the concept of aromaticity has also been utilised to explain the modulation of the strength of non-covalent interactions (NCIs), such as hydrogen bonding (HB), paving the way towards the in silico prediction and design of tailor-made interacting systems. In this work, we try to shed light on this area by exploiting real space techniques, such as the Quantum Theory of Atoms in Molecules (QTAIM), the Interacting Quantum Atoms (IQA) approaches along with the electron delocalisation indicators Aromatic Fluctuation (FLU) and Multicenter (MCI) indices. The QTAIM and IQA methods have been proven capable of providing an unbiased and rigorous picture of NCIs in a wide variety of scenarios, whereas the FLU and MCI descriptors have been successfully exploited in the study of diverse aromatic and antiaromatic systems. We used a collection of simple archetypal examples of aromatic, non-aromatic and antiaromatic moieties within organic molecules to examine the changes in π delocalisation and aromaticity induced by the Aromaticity and Antiaromaticity Modulated Hydrogen Bonds (AMHB). We observed fundamental differences in the behaviour of systems containing the HB acceptor within and outside the ring, e.g., a destabilisation of the rings in the former as opposed to a stabilisation of the latter upon the formation of the corresponding molecular clusters. The results of this work provide a physically sound basis to rationalise the strengthening and weakening of AMHBs with respect to suitable non-cyclic non-aromatic references. We also found significant differences in the chemical bonding scenarios of aromatic and antiaromatic systems in the formation of AMHB. Altogether, our investigation provide novel, valuable insights about the complex mutual influence between hydrogen bonds and π systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...