ABSTRACT
OBJECTIVE: To detail the neurovascular crossing patterns between the leash of Henry (LoH) and the deep branch of the radial nerve (DBRN) in supination and pronation of the forearm, using imaging methods with anatomic correlation. MATERIALS AND METHODS: This cross-sectional study was performed ex vivo with HRUS and MRI with anatomic correlation on 6 samples and in vivo with HRUS with Doppler on 55 participants scanned bilaterally. The in vivo participants were enrolled over a 6-month period. The crossing patterns between the LoH and DBRN were assessed ex vivo and in vivo. Additional morphological features of the DBRN, LoH, and fat plane were assessed in vivo only. Biometric features of the participants were recorded. Statistical analyses were performed using Shapiro-Wilk, parametric and non-parametric tests. RESULTS: The most common neurovascular crossing pattern was the ascending branch of the radial recurrent artery (RRAab) crossing below (ex vivo: 83.3%, in vivo: 85.3%) and the muscular branch crossing above (ex vivo: 100%, in vivo: 63.2% %) the DBRN. Both the deep and superficial surfaces of the DBRN exhibited an intimate relationship with the vessels of the LoH. A positive correlation between vessel diameter and anthropometric factors was observed. In addition, the muscular branch exhibited a significantly smaller diameter than the RRAab. CONCLUSION: Our study detailed the relationship between the LoH and the DBRN and highlighted the high incidence of vessel crossing above the DBRN at the level of the muscular branch. Knowledge of neurovascular crossings is crucial for understanding neurovascular entrapment syndromes and planning interventional procedures to reduce vascular complications.