Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Infect Dis ; 228(6): 674-683, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37384795

ABSTRACT

BACKGROUND: Varicella causes a major health burden in many low- to middle-income countries located in tropical regions. Because of the lack of surveillance data, however, the epidemiology of varicella in these regions remains uncharacterized. In this study, based on an extensive dataset of weekly varicella incidence in children ≤10 during 2011-2014 in 25 municipalities, we aimed to delineate the seasonality of varicella across the diverse tropical climates of Colombia. METHODS: We used generalized additive models to estimate varicella seasonality, and we used clustering and matrix correlation methods to assess its correlation with climate. Furthermore, we developed a mathematical model to examine whether including the effect of climate on varicella transmission could reproduce the observed spatiotemporal patterns. RESULTS: Varicella seasonality was markedly bimodal, with latitudinal changes in the peaks' timing and amplitude. This spatial gradient strongly correlated with specific humidity (Mantel statistic = 0.412, P = .001) but not temperature (Mantel statistic = 0.077, P = .225). The mathematical model reproduced the observed patterns not only in Colombia but also México, and it predicted a latitudinal gradient in Central America. CONCLUSIONS: These results demonstrate large variability in varicella seasonality across Colombia and suggest that spatiotemporal humidity fluctuations can explain the calendar of varicella epidemics in Colombia, México, and potentially in Central America.


Subject(s)
Chickenpox , Child , Humans , Chickenpox/epidemiology , Colombia/epidemiology , Climate , Herpesvirus 3, Human , Humidity , Seasons , Tropical Climate
2.
PLoS Pathog ; 19(3): e1011167, 2023 03.
Article in English | MEDLINE | ID: mdl-36888684

ABSTRACT

Despite the availability of effective vaccines, the persistence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) suggests that cocirculation with other pathogens and resulting multiepidemics (of, for example, COVID-19 and influenza) may become increasingly frequent. To better forecast and control the risk of such multiepidemics, it is essential to elucidate the potential interactions of SARS-CoV-2 with other pathogens; these interactions, however, remain poorly defined. Here, we aimed to review the current body of evidence about SARS-CoV-2 interactions. Our review is structured in four parts. To study pathogen interactions in a systematic and comprehensive way, we first developed a general framework to capture their major components: sign (either negative for antagonistic interactions or positive for synergistic interactions), strength (i.e., magnitude of the interaction), symmetry (describing whether the interaction depends on the order of infection of interacting pathogens), duration (describing whether the interaction is short-lived or long-lived), and mechanism (e.g., whether interaction modifies susceptibility to infection, transmissibility of infection, or severity of disease). Second, we reviewed the experimental evidence from animal models about SARS-CoV-2 interactions. Of the 14 studies identified, 11 focused on the outcomes of coinfection with nonattenuated influenza A viruses (IAVs), and 3 with other pathogens. The 11 studies on IAV used different designs and animal models (ferrets, hamsters, and mice) but generally demonstrated that coinfection increased disease severity compared with either monoinfection. By contrast, the effect of coinfection on the viral load of either virus was variable and inconsistent across studies. Third, we reviewed the epidemiological evidence about SARS-CoV-2 interactions in human populations. Although numerous studies were identified, only a few were specifically designed to infer interaction, and many were prone to multiple biases, including confounding. Nevertheless, their results suggested that influenza and pneumococcal conjugate vaccinations were associated with a reduced risk of SARS-CoV-2 infection. Finally, fourth, we formulated simple transmission models of SARS-CoV-2 cocirculation with an epidemic viral pathogen or an endemic bacterial pathogen, showing how they can naturally incorporate the proposed framework. More generally, we argue that such models, when designed with an integrative and multidisciplinary perspective, will be invaluable tools to resolve the substantial uncertainties that remain about SARS-CoV-2 interactions.


Subject(s)
COVID-19 , Coinfection , Influenza, Human , Humans , Animals , Mice , SARS-CoV-2 , Influenza, Human/epidemiology , Coinfection/epidemiology , Ferrets
3.
Toxicon ; 177: 25-34, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-31982457

ABSTRACT

The use of preparations derived from frog skins for curative purposes antedates research history and is perpetuated in current medicine. The skins of anuran's (frogs and toads) are a rich source of compounds with a great importance in the search of antibiotics, analgesics, immunomodulators, enzymatic inhibitors and antitumoral agents applying to human health. Nowadays, cancer is the second most common cause of mortality with more than 8.2 million of deaths worldwide per year. Acute monocytic leukemia is the subtype M5 of acute myeloid leukemia (AML) a cancer type with reduced survival rates in patients. The monocyte to macrophage differentiation plays an essential role increasing the expansion of AML cell lines. Herein we studied the cytotoxic and antiproliferative activities of eleven amphibian species of three families belonging to Argentinean zones, against THP-1 monocytes and THP-1 macrophages acute monocytic leukemia cell lines. The evaluated species showed pronounced deleterious effects on acute monocytic leukemia THP-1 cell lines, reducing cell proliferation and inducing apoptosis, autophagy and in some cases cell aggregation. Being this work of great importance for the study of new natural anti-cancer compounds.


Subject(s)
Amphibian Venoms/pharmacology , Anura/physiology , Cytotoxins/pharmacology , Animals , Cell Proliferation/drug effects , Humans , Leukemia, Monocytic, Acute , Skin
SELECTION OF CITATIONS
SEARCH DETAIL