Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Sports (Basel) ; 12(3)2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38535729

ABSTRACT

Successful performance in grappling combat sports (GCS) can be influenced by the fighter's capacity to sustain high-intensity contractions of the handgrip muscles during combat. This study investigated the influence of GCS experience on the critical torque (CT), impulse above CT (W'), tolerance, and neuromuscular fatigue development during severe-intensity handgrip exercise by comparing fighters and untrained individuals. Eleven GCS fighters and twelve untrained individuals participated in three experimental sessions for handgrip muscles: (1) familiarization with the experimental procedures and strength assessment; (2) an all-out test to determine CT and W'; and (3) intermittent exercise performed in the severe-intensity domain (CT + 15%) until task failure. No significant differences were found in CT and neuromuscular fatigue between groups (p > 0.05). However, GCS fighters showed greater W' (GCS fighters 2238.8 ± 581.2 N·m·s vs. untrained 1670.4 ± 680.6 N·m·s, p < 0.05) and exercise tolerance (GCS fighters 8.38 ± 2.93 min vs. untrained 5.36 ± 1.42 min, p < 0.05) than untrained individuals. These results suggest that long-term GCS sports training can promote increased tolerance to severe-intensity handgrip exercise and improved W' without changes in CT or the magnitude of neuromuscular fatigue.

2.
Front Sports Act Living ; 5: 1244168, 2023.
Article in English | MEDLINE | ID: mdl-38077283

ABSTRACT

Our aim was to investigate if using a warm-up routine that included parachute-resisted sprints with large hand-paddles improves 50 m freestyle performance in trained collegiate swimmers. Twelve swimmers (23.9 ± 2.2 years, 179 ± 7 cm, 77.1 ± 10.6 kg) participated in the study and completed two 50-m freestyle races, each preceded by a different warm-up routine, either control (CON) or experimental (EXP). The warm-up routines consisted of 500 m of swimming at self-selected speed, followed by four 10 s sprints with 1 min rest intervals. During EXP, sprints were performed using large hand-paddles and a swimming parachute, while during CON, sprints were performed freely. Performance and technique were assessed during the 50 m freestyle races. We found no significant differences in 25- and 50 m performance times (CON: 12.6 ± 0.8 vs. EXP: 12.5 ± 0.8 s, ES = 0.125; and CON: 26.8 ± 1.6 vs. EXP: 26.7 ± 1.7 s, ES = 0.06, respectively) between the two conditions. Mean stroke length (CON: 2.04 ± 0.21 vs. EXP: 2.02 ± 0.22 m·cycle-1, ES = 0.09), stroke frequency (CON: 55.4 ± 5.3 vs. EXP: 56.3 ± 5.2 cycles s-1, ES = 0.17), and propulsive time (CON: 0.62 ± 0.07 vs. EXP: 0.61 ± 0.06 s, ES = 0.15) were also not different between conditions. It is possible that the CON warm-up routine induced the priming effects that lead to PAPE, or that the EXP warm-up routine primed the athletes further but also induced greater fatigue, resulting in no significant effects on swimming performance. Our findings suggest that parachute-resisted sprints with hand-paddles during warm-up do not enhance 50 m freestyle swimming performance in trained collegiate swimmers. Coaches and practitioners should consider exploring different warm-up protocols to identify what works best for their athletes.

3.
Article in English | MEDLINE | ID: mdl-36833557

ABSTRACT

This study aimed to investigate the effects of eccentric cycling (ECCCYC) training on performance, physiological, and morphological parameters in comparison to concentric cycling (CONCYC) training. Searches were conducted using PubMed, Embase, and ScienceDirect. Studies comparing the effect of ECCCYC and CONCYC training regimens on performance, physiological, and/or morphological parameters were included. Bayesian multilevel meta-analysis models were used to estimate the population's mean difference between chronic responses from ECCCYC and CONCYC training protocols. Group levels and meta-regression were used to evaluate the specific effects of subjects and study characteristics. Fourteen studies were included in this review. The meta-analyses showed that ECCCYC training was more effective in increasing knee extensor strength, vastus lateralis fiber cross-sectional area, and six-minute walking distance compared to CONCYC. Moreover, ECCCYC was as effective as CONCYC in decreasing body fat percentage. CONCYC was more effective in increasing V˙O2max and peak power output attained during concentric incremental tests. However, group-level analyses revealed that ECCCYC was more effective than CONCYC in improving V˙O2max in patients with cardiopulmonary diseases. ECCCYC is a viable modality for exercise interventions aiming to improve parameters of muscle strength, hypertrophy, functional capacity, aerobic power, and body composition, with more advantages than CONCYC training in improving neuromuscular variables.


Subject(s)
Muscle Strength , Resistance Training , Humans , Bayes Theorem , Muscle Strength/physiology , Quadriceps Muscle/physiology , Knee/physiology , Knee Joint , Adaptation, Physiological/physiology , Muscle, Skeletal/physiology , Resistance Training/methods
4.
Res Q Exerc Sport ; 94(1): 194-201, 2023 03.
Article in English | MEDLINE | ID: mdl-35316147

ABSTRACT

Purpose: Explosive performance is increased right after performing loaded resistance exercise, which is known as post-activation performance enhancement (PAPE). Method: We investigated the effects of a plyometric exercise (PLYO) consisting of five sets of six drop-jumps from a 52-cm platform with a load corresponding to 20% body mass on changes in countermovement jump (CMJ) height in sedentary young men. Eleven young nonresistance trained men (19.6 ± 1.8 y, 69 ± 9 kg, 1.76 ± 0.08 m) who showed more than 4% increase in CMJ height at 4 min after five back squats with five-repetition maximum load participated in the study. Their responses to the back squat exercise were examined before (baseline) and 15 minutes, 24 and 48 hours post-PLYO. Exercise-induced muscle damage markers (maximal voluntary contraction torque [MVC], and quadriceps muscle soreness) were assessed at baseline, 15 minutes, 24 and 48 hours following PLYO. Results: MVC torque decreased (p < .05) at 15 minutes post-PLYO (-15.1 ± 9.7%) but returned to the baseline at 24 hours post-PLYO. Muscle soreness developed (p < .05) at 48 hours (21.0 ± 20.3 mm) after PLYO, indicating minor muscle damage. CMJ height increased (p < .05) after the five squats at baseline (7.6 ± 3.8%) indicating PAPE, but no such increase was found at 15 minutes, 24 and 48 hours after PLYO. However, CMJ height before the squat exercise was greater (p < .05) at 24 (5.9 ± 7.0%) and 48 hours post-PLYO (9.1 ± 8.5%) than the baseline. Conclusions: These results showed that PAPE disappeared after PLYO that induced minor muscle damage, but CMJ height increased at 24-48 hours in the recovery from PLYO exhibiting a priming effect.


Subject(s)
Plyometric Exercise , Male , Humans , Exercise/physiology , Quadriceps Muscle , Myalgia , Posture , Muscle, Skeletal/physiology , Muscle Strength/physiology
5.
Motriz (Online) ; 28(spe1): e10220013221, 2022. tab, graf
Article in English | LILACS | ID: biblio-1356493

ABSTRACT

Abstract Aim: The present study aimed to screen for differences in isokinetic peak torque, hamstrings-to-quadriceps ratio, and proprioception within the lower limbs of female handball athletes. Methods: Twelve college-level female handball athletes with no previous experience with resistance training performed five maximal isokinetic contractions of the knee extensors and knee flexors to determine isokinetic peak torque and hamstring-to-quadriceps ratios. Proprioception was determined by assessing passive position sense on an isokinetic dynamometer. Results: The athletes presented significantly greater (p < 0.01) knee extensors isometric peak torque for the jumping limb (144.9 ± 23.1) when compared to the non-jumping limb (132.9 ± 21.5). The Hamstrings-to-quadriceps ratio was below 0.6 for both limbs, being significantly greater (p < 0.01) for the non-jumping limb (0.56 ± 0.08) when compared to the jumping limb (0.50 ± 0.08). Conclusion: Female handball athletes that do not engage in resistance training can experience functional bilateral asymmetries in the knee extensors and knee-joint instability, as assessed by the hamstrings-to-quadriceps ratio due to the asymmetric characteristics of handball. Regular strength training might correct such asymmetries and instabilities.


Subject(s)
Humans , Female , Quadriceps Muscle , Muscle Strength , Athletes , Hamstring Muscles , Team Sports , Proprioception
6.
Front Physiol ; 12: 769971, 2021.
Article in English | MEDLINE | ID: mdl-34867477

ABSTRACT

This study aimed to investigate if ACTN3 gene polymorphism impacts the susceptibility to exercise-induced muscle damage (EIMD) and changes in running economy (RE) following downhill running. Thirty-five healthy men were allocated to the two groups based on their ACTN3 gene variants: RR and X allele carriers. Neuromuscular function [knee extensor isometric peak torque (IPT), rate of torque development (RTD), and countermovement, and squat jump height], indirect markers of EIMD [muscle soreness, mid-thigh circumference, knee joint range of motion, and serum creatine kinase (CK) activity], and RE (oxygen uptake, minute ventilation, blood lactate concentration, and perceived exertion) for 5-min of running at a speed equivalent to 80% of individual maximal oxygen uptake speed were assessed before, immediately after, and 1-4 days after a 30-min downhill run (-15%). Neuromuscular function was compromised (P < 0.05) following downhill running with no differences between the groups, except for IPT, which was more affected in the RR individuals compared with the X allele carriers immediately (-24.9 ± 6.9% vs. -16.3 ± 6.5%, respectively) and 4 days (-16.6 ± 14.9% vs. -4.2 ± 9.5%, respectively) post-downhill running. EIMD manifested similarly for both the groups except for serum CK activity, which was greater for RR (398 ± 120 and 452 ± 126 U L-1 at 2 and 4 days following downhill running, respectively) compared with the X allele carriers (273 ± 121 and 352 ± 114 U L-1 at the same time points). RE was compromised following downhill running (16.7 ± 8.3% and 11 ± 7.5% increases in oxygen uptake immediately following downhill running for the RR and X allele carriers, respectively) with no difference between the groups. We conclude that although RR individuals appear to be more susceptible to EIMD following downhill running, this does not extend to the changes in RE.

7.
Eur J Appl Physiol ; 121(2): 381-407, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33180156

ABSTRACT

PURPOSE: There is a profound gap in the understanding of the eccentric cycling intensity continuum, which prevents accurate exercise prescription based on desired physiological responses. This may underestimate the applicability of eccentric cycling for different training purposes. Thus, we aimed to summarize recent research findings and screen for possible new approaches in the prescription and investigation of eccentric cycling. METHOD: A search for the most relevant and state-of-the-art literature on eccentric cycling was conducted on the PubMed database. Literature from reference lists was also included when relevant. RESULTS: Transversal studies present comparisons between physiological responses to eccentric and concentric cycling, performed at the same absolute power output or metabolic load. Longitudinal studies evaluate responses to eccentric cycling training by comparing them with concentric cycling and resistance training outcomes. Only one study investigated maximal eccentric cycling capacity and there are no investigations on physiological thresholds and/or exercise intensity domains during eccentric cycling. No study investigated different protocols of eccentric cycling training and the chronic effects of different load configurations. CONCLUSION: Describing physiological responses to eccentric cycling based on its maximal exercise capacity may be a better way to understand it. The available evidence indicates that clinical populations may benefit from improvements in aerobic power/capacity, exercise tolerance, strength and muscle mass, while healthy and trained individuals may require different eccentric cycling training approaches to benefit from similar improvements. There is limited evidence regarding the mechanisms of acute physiological and chronic adaptive responses to eccentric cycling.


Subject(s)
Bicycling/physiology , Exercise/physiology , Physical Exertion/physiology , Exercise Tolerance/physiology , Humans , Longitudinal Studies , Muscle Contraction/physiology , Muscle Strength/physiology , Muscle, Skeletal/physiology , Resistance Training/methods
8.
Rev. bras. cineantropom. desempenho hum ; 23: e77035, 2021. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1340967

ABSTRACT

ABSTRACT We aimed to investigate the influence of alpha-actinin-3 (ACTN3) R577X polymorphism on responsiveness to post-activation performance enhancement (PAPE) of countermovement jumps (CMJ) in untrained subjects. Sixteen untrained men were allocated into two groups according to their ACTN3 gene alleles: homozygous for the X allele (XX, n = 9) or homozygous for the R allele (RR, n = 7). CMJ height, mean power output and vertical force were determined twice (CMJ1 and CMJ2) in two conditions: control (CON) and potentiated (PAPE). In the CON condition, CMJ were performed before and after a 15-min rest. In the PAPE condition, CMJ were performed 15 min before and 4 min following five squats with a 5-repetition maximum (5RM) load. Different conditions were applied on separate days in a randomized order. Statistical analysis involved three-way ANOVAs to compare the differences between conditions (CON and PAPE), time (CMJ1 and CMJ2), and groups (XX and RR). Significance level considered was p < 0.05. Effect sizes were calculated as Cohen's d. The effect sizes for changes in CMJ height for CON and following pre-activation for PAPE were 0.04 and 0.08, respectively. No significant differences were found for CMJ height between XX and RR at baseline (1.07 ± 2.54 cm e -0.82 ± 2.56 cm, respectively). No differences were found (p>0.05) in responsiveness to PAPE between the groups (XX = -0.20 ± 1.6 cm and RR = -0.81 ± 2.7 cm). We conclude that ACTN3 gene polymorphisms does not influence responsiveness to PAPE.


RESUMO Tivemos como objetivo investigar a influência do polimorfismo do gene ACTN3 na responsividade à potencialização do desempenho de salto com contra movimento (CMJ) pós-ativação (PAPE). Dezesseis homens destreinados foram divididos em dois grupos: homozigotos para os alelos X (XX, n = 9) ou R (RR, n = 7). A altura de CMJ, a potência média e a força vertical aplicada durante o salto pelos participantes foram determinadas duas vezes (CMJ1 e CMJ2) em duas condições: controle (CON) e potencializado (PAPE). Na condição CON, os CMJ foram realizados antes e depois de um período de 15 minutos de repouso. Na condição PAPE, os CMJ foram realizados 15 minutos antes e 4 minutos após a realização de cinco agachamentos com carga de cinco repetições máximas (5RM). As diferentes condições foram realizadas em dias separados e em ordem randomizada. ANOVAs fatoriais de três caminhos foram utilizadas para comparar diferenças entre condições, tempos e grupos. O tamanho do efeito foi calculado pelo d de Cohen. Os tamanhos do efeito para alterações na altura de CMJ para os grupos CON e PAPE foram 0.04 e 0.08, respectivamente. Não houve diferenças significantes entre os grupos XX e RR na altura de salto em condição basal (1.07 ± 2.54 cm e -0.82 ± 2.56 cm, respectivamente). Não houve diferenças significativas na responsividade à PAPE entre os grupos (XX = -0.20 ± 1.6 cm e RR = -0.81 ± 2.7 cm). O polimorfismo do gene ACTN3 parece não ser influenciar isoladamente a responsividade à PAPE.

9.
Sci Rep ; 10(1): 18809, 2020 11 02.
Article in English | MEDLINE | ID: mdl-33139834

ABSTRACT

Fatigue can be defined as exercise-induced strength loss. During running, fatigue can be partially explained by repetitive low-intensity eccentric contractions-induced muscle damage (EIMD). Previous studies showed that a bout of downhill running (DR) attenuated subsequent EIMD. Thus, we tested if a 30-min DR bout would attenuate fatigue induced by subsequent 60-min level running (LR). Twenty-seven male college students were randomly allocated to an experimental (EXP) or a control (CON) group. All participants performed LR on a treadmill at 70% of the velocity (vVO2peak) corresponding to peak oxygen uptake (VO2peak). Only EXP performed a 30-min DR (- 15%) on a treadmill at 70% vVO2peak fourteen days before LR. Indirect EIMD markers and neuromuscular function were assessed before, immediately and 48 h after DR and LR. Knee extension isometric peak torque (IPT) decreased (- 36.3 ± 26%, p < 0.05) immediately following DR with full recovery reached 48 h post-DR. Muscle soreness developed (p < 0.05) immediately (37 ± 25 mm) and 48 h (45 ± 26 mm) post-DR. IPT and rate of torque development (RTD) at late phases (> 150 ms) from the onset of muscle contraction decreased significantly (- 10.7 ± 6.1% and from - 15.4 to - 18.7%, respectively) immediately after LR for the CON group and remained below baseline values (- 5.6 ± 8.5% and from - 13.8 to - 14.9%, respectively) 48 h post-LR. However, IPT and late RTD were not significantly affected by LR for the EXP group, showing a group x time interaction effect. We concluded that a single DR bout can be used to attenuate fatigue induced by a LR performed fourteen days after.


Subject(s)
Fatigue/etiology , Fatigue/rehabilitation , Muscle Contraction/physiology , Running/physiology , Torque , Adult , Humans , Male , Myalgia/etiology , Myalgia/physiopathology , Oxygen Consumption , Time Factors , Young Adult
10.
Front Physiol ; 10: 1203, 2019.
Article in English | MEDLINE | ID: mdl-31632283

ABSTRACT

We investigated if the same isometric preconditioning protocol (IPP) attenuates the magnitude of muscle damage induced by different maximal eccentric exercise protocols in the elbow flexors. Sixty-four untrained men were assigned to either two experimental or two control groups. Participants in the experimental groups performed an IPP prior to either slow (60°·s-1 - ISO + ECC-S) or fast (180°·s-1 - ISO + ECC-F) maximal eccentric contractions (MaxECC). Subjects in the control groups performed slow (ECC-S) or fast (ECC-F) MaxECC without IPP. Maximal isokinetic concentric torque (MVC), muscle soreness (SOR), and muscle thickness (MT) were assessed before, immediately after, and 1-4 days following the MaxECC. Significant (p < 0.05) group vs. time interactions were found for MVC (F = 4,517), SOR (F = 6,318), and MT (F = 1,863). The ECC-S group presented faster (p < 0.05) recovery of MVC and MT and less (p < 0.05) SOR at 96 h post-MaxECC compared with ECC-F group. No significant differences in MVC and MT were found between ECC-S and ECC-F groups following MaxECC. The ISO + ECC-S group showed faster (p < 0.05) recovery of MVC and SOR compared to the ECC-S group. No significant differences were evident between ISO + ECC-S and ECC-S in any variable. The ISO + ECC-F group showed faster (p < 0.05) recovery of all assessed variables compared with the ECC-F group. MVC was greater (p < 0.05) at 48-72 h, and SOR was less (p < 0.05) at 48-96 h in the ISO + ECC-F compared to the ECC-F group. No significant differences were evident between ISO + ECC-S and ISO + ECC-F for any variable. These results show that the IPP accelerated recovery of MVC and SOR for the slow-eccentric exercise condition and attenuated strength loss and SOR in addition to faster recovery of all assessed variables for the fast-eccentric exercise condition. Therefore, the IPP can be used as a strategy to attenuate and accelerate recovery of muscle damage induced by different-velocity eccentric exercises, resulting in greater protection against muscle damage induced by faster velocity.

SELECTION OF CITATIONS
SEARCH DETAIL
...