Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 15: 1241515, 2024.
Article in English | MEDLINE | ID: mdl-39006962

ABSTRACT

The plastid-targeted transcription factor Whirly1 (WHY1) has been implicated in chloroplast biogenesis, plastid genome stability, and fungal defense response, which together represent characteristics of interest for the study of autotrophic losses across the angiosperms. While gene loss in the plastid and nuclear genomes has been well studied in mycoheterotrophic plants, the evolution of the molecular mechanisms impacting genome stability is completely unknown. Here, we characterize the evolution of WHY1 in four early transitional mycoheterotrophic orchid species in the genus Corallorhiza by synthesizing the results of phylogenetic, transcriptomic, and comparative genomic analyses with WHY1 genomic sequences sampled from 21 orders of angiosperms. We found an increased number of non-canonical WHY1 isoforms assembled from all but the greenest Corallorhiza species, including intron retention in some isoforms. Within Corallorhiza, phylotranscriptomic analyses revealed the presence of tissue-specific differential expression of WHY1 in only the most photosynthetically capable species and a coincident increase in the number of non-canonical WHY1 isoforms assembled from fully mycoheterotrophic species. Gene- and codon-level tests of WHY1 selective regimes did not infer significant signal of either relaxed selection or episodic diversifying selection in Corallorhiza but did so for relaxed selection in the late-stage full mycoheterotrophic orchids Epipogium aphyllum and Gastrodia elata. Additionally, nucleotide substitutions that most likely impact the function of WHY1, such as nonsense mutations, were only observed in late-stage mycoheterotrophs. We propose that our findings suggest that splicing and expression changes may precede the selective shifts we inferred for late-stage mycoheterotrophic species, which therefore does not support a primary role for WHY1 in the transition to mycoheterotrophy in the Orchidaceae. Taken together, this study provides the most comprehensive view of WHY1 evolution across the angiosperms to date.

2.
Am J Bot ; 111(7): e16370, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38989916

ABSTRACT

PREMISE: Leafless, heterotrophic plants are prime examples of organismal modification, the genomic consequences of which have received considerable interest. In particular, plastid genomes (plastomes) are being sequenced at a high rate, allowing continual refinement of conceptual models of reductive evolution in heterotrophs. However, numerous sampling gaps exist, hindering the ability to conduct comprehensive phylogenomic analyses in these plants. METHODS: Using floral tissue from an herbarium specimen, we sequenced and analyzed the plastome of Degranvillea dermaptera, a rarely collected, leafless orchid species from South America about which little is known, including its phylogenetic affinities. RESULTS: The plastome is the most reduced of those sequenced among the orchid subfamily Orchidoideae. In Degranvillea, it has lost the majority of genes found in leafy autotrophic species, is structurally rearranged, and has similar gene content to the most reduced plastomes among the orchids. We found strong evidence for the placement of Degranvillea within the subtribe Spiranthinae using models that explicitly account for heterotachy, or lineage-specific evolutionary rate variation over time. We further found evidence of relaxed selection on several genes and of correlations among substitution rates and several other "traits" of the plastome among leafless members of orchid subfamily Orchidoideae. CONCLUSIONS: Our findings advance knowledge on the phylogenetic relationships and paths of plastid genome evolution among the orchids, which have experienced more independent transitions to heterotrophy than any other plant family. This study demonstrates the importance of herbarium collections in comparative genomics of poorly known species of conservation concern.


Subject(s)
Evolution, Molecular , Genome, Plastid , Orchidaceae , Phylogeny , Orchidaceae/genetics
4.
Ann Bot ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38804968

ABSTRACT

BACKGROUND AND AIMS: Heterotrophic plants have long been a challenge for systematists, exemplified by the base of the orchid subfamily Epidendroideae, which contains numerous mycoheterotrophic species. METHODS: Here we address the utility of organellar genomes in resolving relationships at the epidendroid base, specifically employing models of heterotachy, or lineage-specific rate variation over time. We further conduct comparative analyses of plastid genome evolution in heterotrophs and structural variation in matK. KEY RESULTS: We present the first complete plastid genomes (plastomes) of Wullschlaegelia, the sole genus of the tribe Wullschlaegelieae, revealing a highly reduced genome of 37 kilobases, which retains a fraction of the genes present in related autotrophs. Plastid phylogenomic analyses recovered a strongly supported clade composed exclusively of mycoheterotrophic species with long branches. We further analyzed mitochondrial gene sets, which recovered similar relationships to those in other studies using nuclear data, but the placement of Wullschlaegelia remains uncertain. We conducted comparative plastome analyses among Wullschlaegelia and other heterotrophic orchids, revealing a suite of correlated substitutional and structural changes relative to autotrophic species. Lastly, we investigated evolutionary and structural variation in matK, which is retained in Wullschlaegelia and a few other 'late stage' heterotrophs and found evidence for structural conservation despite rapid substitution rates in both Wullschlaegelia and the leafless Gastrodia. CONCLUSIONS: Our analyses reveal the limits of what the plastid genome can tell us on orchid relationships in this part of the tree, even when applying parameter-rich heterotachy models. Our study underscores the need for increased taxon sampling across all three genomes at the epidendroid base, and illustrates the need for further research on addressing heterotachy in phylogenomic analyses.

5.
Plant Mol Biol ; 114(3): 40, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622367

ABSTRACT

Parasitic lifestyle can often relax the constraint on the plastome, leading to gene pseudogenization and loss, and resulting in diverse genomic structures and rampant genome degradation. Although several plastomes of parasitic Cuscuta have  been reported, the evolution of parasitism in the family Convolvulaceae which is linked to structural variations and reduction of plastome has not been well investigated. In this study, we assembled and collected 40 plastid genomes belonging to 23 species representing four subgenera of Cuscuta and ten species of autotrophic Convolvulaceae. Our findings revealed nine types of structural variations and six types of inverted repeat (IR) boundary variations in the plastome of Convolvulaceae spp. These structural variations were associated with the shift of parasitic lifestyle, and IR boundary shift, as well as the abundance of long repeats. Overall, the degradation of Cuscuta plastome proceeded gradually, with one clade exhibiting an accelerated degradation rate. We observed five stages of gene loss in Cuscuta, including NAD(P)H complex → PEP complex → Photosynthesis-related → Ribosomal protein subunits → ATP synthase complex. Based on our results, we speculated that the shift of parasitic lifestyle in early divergent time promoted relaxed selection on plastomes, leading to the accumulation of microvariations, which ultimately resulted in the plastome reduction. This study provides new evidence towards a better understanding of plastomic evolution, variation, and reduction in the genus Cuscuta.


Subject(s)
Convolvulaceae , Cuscuta , Genome, Plastid , Convolvulaceae/genetics , Cuscuta/genetics , Genes, Plant , Photosynthesis/genetics , Phylogeny , Evolution, Molecular
6.
Am J Surg Pathol ; 48(4): 475-486, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38298022

ABSTRACT

Serous tubal intraepithelial carcinoma (STIC) is the fallopian tube precursor lesion for most cases of pelvic high-grade serous carcinoma (HGSC). To date, the morphologic, molecular, and clinical heterogeneity of STIC and a less atypical putative precursor lesion, termed serous tubal intraepithelial lesion, has not been well characterized. Better understanding of precursor heterogeneity could impact the clinical management of women with incidental STICs (without concurrent carcinoma) identified in cases of prophylactic or opportunistic salpingectomy. This study analyzed morphologic and molecular features of 171 STICs and 21 serous tubal intraepithelial lesions. We assessed their histologic features, Ki-67 and p53 staining patterns, and genome-wide DNA copy number alterations. We classified all precursor lesions into 2 morphologic subtypes, one with a flat surface (Flat) and the other characterized by budding, loosely adherent, or detached (BLAD) morphology. On the basis of pathology review by a panel of 8 gynecologic pathologists, we found 87 BLAD, 96 Flat, and 9 indeterminate lesions. As compared with Flat lesions, BLAD lesions were more frequently diagnostic of STIC ( P <0.0001) and were found concurrently with HGSC ( P <0.0001). BLAD morphology was also characterized by higher Ki-67 proliferation index ( P <0.0001), presence of epithelial stratification ( P <0.0001), and increased lymphocyte density ( P <0.0001). BLAD lesions also exhibited more frequent DNA copy number gain/amplification at the CCNE1 or CMYC loci canonical to HGSCs ( P <0.0001). Both BLAD morphology and STIC diagnoses are independent risk factors for an elevated Ki-67 proliferation index. No correlation was observed between BLAD and Flat lesions with respect to patient age, presence of germline BRCA1/2 mutation, or p53 staining pattern. These findings suggest that tubal precursor lesions are morphologically and molecularly heterogeneous, laying the foundation for further studies on the pathogenesis of HGSC initiation and identifying histologic features predictive of poor patient outcomes.


Subject(s)
Adenocarcinoma in Situ , Carcinoma in Situ , Carcinoma , Cystadenocarcinoma, Serous , Fallopian Tube Neoplasms , Ovarian Neoplasms , Female , Humans , BRCA1 Protein , Carcinoma in Situ/genetics , Carcinoma in Situ/pathology , Ovarian Neoplasms/pathology , Ki-67 Antigen , Tumor Suppressor Protein p53/genetics , BRCA2 Protein , Fallopian Tube Neoplasms/genetics , Fallopian Tube Neoplasms/pathology , Cystadenocarcinoma, Serous/genetics , Cystadenocarcinoma, Serous/pathology , DNA
SELECTION OF CITATIONS
SEARCH DETAIL