Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Water Res ; 195: 116992, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33714012

ABSTRACT

The aerobic granular sludge (AGS) process is an effective wastewater treatment technology for organic matter and nutrient removal that has been introduced in the market rapidly. Until now, limited information is available on AGS regarding the removal of bacterial and viral pathogenic organisms present in sewage. This study focussed on determining the relation between reactor operational conditions (plug flow feeding, turbulent aeration and settling) and physical and biological mechanisms on removing two faecal surrogates, Escherichia coli and MS2 bacteriophages. Two AGS laboratory-scale systems were separately fed with influent spiked with 1.0 × 106 CFU/100 mL of E. coli and 1.3 × 108 PFU/100 mL of MS2 bacteriophages and followed during the different operational phases. The reactors contained only granular sludge and no flocculent sludge. Both systems showed reductions in the liquid phase of 0.3 Log10 during anaerobic feeding caused by a dilution factor and attachment of the organisms on the granules. Higher removal efficiencies were achieved during aeration, approximately 1 Log10 for E. coli and 0.6 Log10 for the MS2 bacteriophages caused mainly by predation. The 18S sequencing analysis revealed high operational taxonomic units (OTUs) of free-living protozoa genera Rhogostoma and Telotrochidium concerning the whole eukaryotic community. Attached ciliates propagated after the addition of the E. coli, an active contribution of the genera Epistylis, Vorticella, and Pseudovorticella was found when the reactor reached stability. In contrast, no significant growth of predators occurred when spiking the system with MS2 bacteriophages, indicating a low contribution of protozoa on the phage removal. Settling did not contribute to the removal of the studied bacterial and viral surrogates.


Subject(s)
Sewage , Water Purification , Aerobiosis , Bioreactors , Escherichia coli , Waste Disposal, Fluid
2.
Sci Total Environ ; 741: 140480, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-32886969

ABSTRACT

The co-treatment of two synthetic faecal sludges (FS-1 and FS-2) with municipal synthetic wastewater (WW) was evaluated in an aerobic granular sludge (AGS) reactor. After characterisation, FS-1 showed the following concentrations, representative for medium-strength FS: 12,180 mg TSS L-1, 24,300 mg total COD L-1, 93.8 mg PO3-P L-1, and 325 mg NH4-N L-1. The NO3-N concentration was relatively high (300 mg L-1). For FS-2, the main difference with FS-1 was a lower nitrate concentration (18 mg L-1). The recipes were added consecutively, together with the WW, to an AGS reactor. In the case of FS-1, the system was fed with 7.2 kg total COD m-3d-1 and 0.5 kg Nitrogen m-3d-1. Undesired denitrification occurred during feeding and settling resulting in floating sludge and wash-out. In the case of FS-2, the system was fed with 8.0 kg total COD m-3d-1 and 0.3 kg Nitrogen m-3d-1. The lower NO3-N concentration in FS-2 resulted in less floating sludge, a more stabilised granular bed and better effluent concentrations. To enhance the hydrolysis of the slowly biodegradable particulates from the synthetic FS, an anaerobic stand-by period was added and the aeration period was increased. Overall, when compared to a control AGS reactor, a lower COD consumption (from 87 to 35 mg g-1 VSS h-1), P-uptake rates (from 6.0 to 2.0 mg P g VSS-1 h-1) and NH4-N removal (from 2.5 to 1.4 mg NH4-N g VSS-1 h-1) were registered after introducing the synthetic FS. Approximately 40% of the granular bed became flocculent at the end of the study, and a reduction of the granular size accompanied by higher solids accumulation in the reactor was observed. A considerable protozoa Vorticella spp. bloom attached to the granules and the accumulated particles occurred; potentially contributing to the removal of the suspended solids which were part of the FS recipe.


Subject(s)
Sewage , Wastewater , Bioreactors , Nitrogen , Waste Disposal, Fluid
3.
Water Res X ; 6: 100040, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-31909394

ABSTRACT

The aim of this study was to evaluate the effectiveness of the novel aerobic granular sludge (AGS) wastewater treatment technology in removing faecal indicator organisms (FIOs) compared to the conventional activated sludge (CAS) treatment system. The work was carried out at two full-scale wastewater treatment plants (WWTP) in the Netherlands, Vroomshoop and Garmerwolde. Both treatment plants have a CAS and AGS system operated in parallel. The parallel treatment lines are provided with the same influent wastewater. The concentrations of the measured FIOs in the influent of the two WWTPs were comparable with reported literature values as follows: F-specific RNA bacteriophages at 106 PFU/100 mL, and Escherichia coli (E. coli), Enterococci, and Thermotolerant coliforms (TtC) at 105 to 106 CFU/100 mL. Although both systems (CAS and AGS) are different in terms of design, operation, and microbial community, both systems showed similar FIOs removal efficiency. At the Vroomshoop WWTP, Log10 removals for F-specific RNA bacteriophages of 1.4 ± 0.5 and 1.3 ± 0.6 were obtained for the AGS and CAS systems, while at the Garmerwolde WWTP, Log10 removals for F-specific RNA bacteriophages of 1.9 ± 0.7 and 2.1 ± 0.7 were found for the AGS and CAS systems. Correspondingly, E. coli, Enterococci, and TtC Log10 removals of 1.7 ± 0.7 and 1.1 ± 0.7 were achieved for the AGS and CAS systems at Vroomshoop WWTP. For Garmerwolde WWTP Log10 removals of 2.3 ± 0.8 and 1.9 ± 0.7 for the AGS and CAS systems were found, respectively. The measured difference in removal rates between the plants was not significant. Physicochemical water quality parameters, such as the concentrations of organic matter, nutrients, and total suspended solids (TSS) were also determined. Overall, it was not possible to establish a direct correlation between the physicochemical parameters and the removal of FIOs for any of the treatment systems (CAS and AGS). Only the removal of TSS could be positively correlated to the E. coli removal for the AGS technology at the evaluated WWTPs.

SELECTION OF CITATIONS
SEARCH DETAIL
...