Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Sci Immunol ; 8(82): eadd8945, 2023 04 14.
Article in English | MEDLINE | ID: mdl-37027478

ABSTRACT

Macrophages are central orchestrators of the tissue response to injury, with distinct macrophage activation states playing key roles in fibrosis progression and resolution. Identifying key macrophage populations found in human fibrotic tissues could lead to new treatments for fibrosis. Here, we used human liver and lung single-cell RNA sequencing datasets to identify a subset of CD9+TREM2+ macrophages that express SPP1, GPNMB, FABP5, and CD63. In both human and murine hepatic and pulmonary fibrosis, these macrophages were enriched at the outside edges of scarring and adjacent to activated mesenchymal cells. Neutrophils expressing MMP9, which participates in the activation of TGF-ß1, and the type 3 cytokines GM-CSF and IL-17A coclustered with these macrophages. In vitro, GM-CSF, IL-17A, and TGF-ß1 drive the differentiation of human monocytes into macrophages expressing scar-associated markers. Such differentiated cells could degrade collagen IV but not collagen I and promote TGF-ß1-induced collagen I deposition by activated mesenchymal cells. In murine models blocking GM-CSF, IL-17A or TGF-ß1 reduced scar-associated macrophage expansion and hepatic or pulmonary fibrosis. Our work identifies a highly specific macrophage population to which we assign a profibrotic role across species and tissues. It further provides a strategy for unbiased discovery, triage, and preclinical validation of therapeutic targets based on this fibrogenic macrophage population.


Subject(s)
Granulocyte-Macrophage Colony-Stimulating Factor , Pulmonary Fibrosis , Humans , Mice , Animals , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Transforming Growth Factor beta1/metabolism , Interleukin-17/metabolism , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/pathology , Cicatrix , Macrophages/pathology , Inflammation/pathology , Fatty Acid-Binding Proteins/metabolism , Membrane Glycoproteins , Receptors, Immunologic
2.
Ann Rheum Dis ; 79(3): 379-386, 2020 03.
Article in English | MEDLINE | ID: mdl-31767698

ABSTRACT

OBJECTIVES: Determine global skin transcriptome patterns of early diffuse systemic sclerosis (SSc) and how they differ from later disease. METHODS: Skin biopsy RNA from 48 patients in the Prospective Registry for Early Systemic Sclerosis (PRESS) cohort (mean disease duration 1.3 years) and 33 matched healthy controls was examined by next-generation RNA sequencing. Data were analysed for cell type-specific signatures and compared with similarly obtained data from 55 previously biopsied patients in Genetics versus Environment in Scleroderma Outcomes Study cohort with longer disease duration (mean 7.4 years) and their matched controls. Correlations with histological features and clinical course were also evaluated. RESULTS: SSc patients in PRESS had a high prevalence of M2 (96%) and M1 (94%) macrophage and CD8 T cell (65%), CD4 T cell (60%) and B cell (69%) signatures. Immunohistochemical staining of immune cell markers correlated with the gene expression-based immune cell signatures. The prevalence of immune cell signatures in early diffuse SSc patients was higher than in patients with longer disease duration. In the multivariable model, adaptive immune cell signatures were significantly associated with shorter disease duration, while fibroblast and macrophage cell type signatures were associated with higher modified Rodnan Skin Score (mRSS). Immune cell signatures also correlated with skin thickness progression rate prior to biopsy, but did not predict subsequent mRSS progression. CONCLUSIONS: Skin in early diffuse SSc has prominent innate and adaptive immune cell signatures. As a prominently affected end organ, these signatures reflect the preceding rate of disease progression. These findings could have implications in understanding SSc pathogenesis and clinical trial design.


Subject(s)
Adaptive Immunity/genetics , Immunity, Innate/genetics , Scleroderma, Diffuse/genetics , Scleroderma, Diffuse/immunology , Adult , Biomarkers/analysis , Biopsy , Female , High-Throughput Nucleotide Sequencing , Humans , Male , Middle Aged , Multivariate Analysis , Prospective Studies , Registries , Regression Analysis , Scleroderma, Diffuse/pathology , Sequence Analysis, RNA , Severity of Illness Index , Skin/immunology , Skin/pathology , Transcriptome
3.
J Immunol ; 202(1): 56-68, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30510068

ABSTRACT

Perivascular accumulation of lymphocytes can be a prominent histopathologic feature of various human inflammatory skin diseases. Select examples include systemic sclerosis, spongiotic dermatitis, and cutaneous lupus. Although a large body of work has described various aspects of the endothelial and vascular smooth muscle layers in these diseases, the outer adventitial compartment is poorly explored. The goal of the current study was to characterize perivascular adventitial fibroblast states in inflammatory human skin diseases and relate these states to perivascular lymphocyte accumulation. In normal skin, adventitial fibroblasts are distinguished by CD90 expression, and dense perivascular lymphocytic infiltrates are uncommon. In systemic sclerosis, this compartment expands, but lymphocyte infiltrates remain sparse. In contrast, perivascular adventitial fibroblast expression of VCAM1 is upregulated in spongiotic dermatitis and lupus and is associated with a dense perivascular T cell infiltrate. VCAM1 expression marks transitioned fibroblasts that show some resemblance to the reticular stromal cells in secondary lymphoid organs. Expanded adventitial compartments with perivascular infiltrates similar to the human settings were not seen in the inflamed murine dermis. This species difference may hinder the dissection of aspects of perivascular adventitial pathology. The altered perivascular adventitial compartment and its associated reticular network form a niche for lymphocytes and appear to be fundamental in the development of an inflammatory pattern.


Subject(s)
Dermatitis/immunology , Fibroblasts/physiology , Inflammation/immunology , Lupus Erythematosus, Discoid/immunology , Scleroderma, Systemic/immunology , Skin/immunology , T-Lymphocytes/immunology , Adult , Aged , Aged, 80 and over , Cells, Cultured , Female , Humans , Male , Middle Aged , Thy-1 Antigens/metabolism , Vascular Cell Adhesion Molecule-1/metabolism , Young Adult
4.
Am J Pathol ; 186(10): 2650-64, 2016 10.
Article in English | MEDLINE | ID: mdl-27565038

ABSTRACT

Tissue injury triggers the activation and differentiation of multiple cell types to minimize damage and initiate repair processes. In systemic sclerosis, these repair processes appear to run unchecked, leading to aberrant remodeling and fibrosis of the skin and multiple internal organs, yet the fundamental pathological defect remains unknown. We describe herein a transition wherein the abundant CD34(+) dermal fibroblasts present in healthy human skin disappear in the skin of systemic sclerosis patients, and CD34(-), podoplanin(+), and CD90(+) fibroblasts appear. This transition is limited to the upper dermis in several inflammatory skin diseases, yet in systemic sclerosis, it can occur in all regions of the dermis. In vitro, primary dermal fibroblasts readily express podoplanin in response to the inflammatory stimuli tumor necrosis factor and IL-1ß. Furthermore, we show that on acute skin injury in both human and murine settings, this transition occurs quickly, consistent with a response to inflammatory signaling. Transitioned fibroblasts partially resemble the cells that form the reticular networks in organized lymphoid tissues, potentially linking two areas of fibroblast research. These results allow for the visualization and quantification of a basic stage of fibroblast differentiation in inflammatory and fibrotic diseases in the skin.


Subject(s)
Fibrosis/pathology , Membrane Glycoproteins/metabolism , Scleroderma, Systemic/pathology , Thy-1 Antigens/metabolism , Adult , Aged , Aged, 80 and over , Animals , Cell Differentiation , Dermis/immunology , Dermis/pathology , Female , Fibroblasts/immunology , Fibroblasts/pathology , Fibrosis/immunology , Humans , Interleukin-1beta/immunology , Interleukin-1beta/metabolism , Male , Mice , Middle Aged , Scleroderma, Systemic/immunology , Skin/immunology , Skin/pathology , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...