Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Elife ; 102021 08 05.
Article in English | MEDLINE | ID: mdl-34350828

ABSTRACT

The circadian clock component NR1D1 (REVERBα) is considered a dominant regulator of lipid metabolism, with global Nr1d1 deletion driving dysregulation of white adipose tissue (WAT) lipogenesis and obesity. However, a similar phenotype is not observed under adipocyte-selective deletion (Nr1d1Flox2-6:AdipoqCre), and transcriptional profiling demonstrates that, under basal conditions, direct targets of NR1D1 regulation are limited, and include the circadian clock and collagen dynamics. Under high-fat diet (HFD) feeding, Nr1d1Flox2-6:AdipoqCre mice do manifest profound obesity, yet without the accompanying WAT inflammation and fibrosis exhibited by controls. Integration of the WAT NR1D1 cistrome with differential gene expression reveals broad control of metabolic processes by NR1D1 which is unmasked in the obese state. Adipocyte NR1D1 does not drive an anticipatory daily rhythm in WAT lipogenesis, but rather modulates WAT activity in response to alterations in metabolic state. Importantly, NR1D1 action in adipocytes is critical to the development of obesity-related WAT pathology and insulin resistance.


Subject(s)
Adipocytes/metabolism , Adipose Tissue/metabolism , Nuclear Receptor Subfamily 1, Group D, Member 1/genetics , Obesity/genetics , Animals , Energy Metabolism , Gene Deletion , Lipid Metabolism , Male , Mice , Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism , Obesity/metabolism
3.
Nat Commun ; 12(1): 2472, 2021 04 30.
Article in English | MEDLINE | ID: mdl-33931651

ABSTRACT

Electrical activity in the heart exhibits 24-hour rhythmicity, and potentially fatal arrhythmias are more likely to occur at specific times of day. Here, we demonstrate that circadian clocks within the brain and heart set daily rhythms in sinoatrial (SA) and atrioventricular (AV) node activity, and impose a time-of-day dependent susceptibility to ventricular arrhythmia. Critically, the balance of circadian inputs from the autonomic nervous system and cardiomyocyte clock to the SA and AV nodes differ, and this renders the cardiac conduction system sensitive to decoupling during abrupt shifts in behavioural routine and sleep-wake timing. Our findings reveal a functional segregation of circadian control across the heart's conduction system and inherent susceptibility to arrhythmia.


Subject(s)
Arrhythmias, Cardiac/physiopathology , Atrioventricular Node/physiology , Circadian Rhythm/physiology , Heart Rate/physiology , Myocytes, Cardiac/physiology , Sinoatrial Node/physiology , ARNTL Transcription Factors/genetics , ARNTL Transcription Factors/metabolism , Adult , Animals , Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/metabolism , Atrioventricular Node/metabolism , Autonomic Nervous System/physiology , Circadian Clocks/physiology , Electrocardiography , Female , Gene Expression Regulation/genetics , Gene Expression Regulation/physiology , Humans , Male , Mice , Mice, Transgenic , Middle Aged , Myocytes, Cardiac/metabolism , Sinoatrial Node/metabolism , Sleep/physiology
4.
Proc Natl Acad Sci U S A ; 117(41): 25869-25879, 2020 10 13.
Article in English | MEDLINE | ID: mdl-32989157

ABSTRACT

The nuclear receptor REVERBα is a core component of the circadian clock and proposed to be a dominant regulator of hepatic lipid metabolism. Using antibody-independent ChIP-sequencing of REVERBα in mouse liver, we reveal a high-confidence cistrome and define direct target genes. REVERBα-binding sites are highly enriched for consensus RORE or RevDR2 motifs and overlap with corepressor complex binding. We find no evidence for transcription factor tethering and DNA-binding domain-independent action. Moreover, hepatocyte-specific deletion of Reverbα drives only modest physiological and transcriptional dysregulation, with derepressed target gene enrichment limited to circadian processes. Thus, contrary to previous reports, hepatic REVERBα does not repress lipogenesis under basal conditions. REVERBα control of a more extensive transcriptional program is only revealed under conditions of metabolic perturbation (including mistimed feeding, which is a feature of the global Reverbα-/- mouse). Repressive action of REVERBα in the liver therefore serves to buffer against metabolic challenge, rather than drive basal rhythmicity in metabolic activity.


Subject(s)
Energy Metabolism , Liver/metabolism , Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism , Amino Acid Motifs , Animals , CLOCK Proteins/genetics , CLOCK Proteins/metabolism , Circadian Clocks , Gene Expression Regulation , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Nuclear Receptor Subfamily 1, Group D, Member 1/chemistry , Nuclear Receptor Subfamily 1, Group D, Member 1/genetics
SELECTION OF CITATIONS
SEARCH DETAIL