Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 267(Pt 2): 131666, 2024 May.
Article in English | MEDLINE | ID: mdl-38636755

ABSTRACT

Natural Rubber Latex (NRL) has shown to be a promising biomaterial for use as a drug delivery system to release various bioactive compounds. It is cost-effective, easy to handle, biocompatible, and exhibits pro-angiogenic and pro-healing properties for both soft and hard tissues. NRL releases compounds following burst and sustained release kinetics, exhibiting first-order release kinetics. Moreover, its pore density can be adjusted for tailored kinetics profiles. In addition, biotechnological applications of NRL in amblyopia, smart mattresses, and neovaginoplasty have demonstrated success. This comprehensive review explores NRL's diverse applications in biotechnology and biomedicine, addressing challenges in translating research into clinical practice. Organized into eight sections, the review emphasizes NRL's potential in wound healing, drug delivery, and metallic nanoparticle synthesis. It also addresses the challenges in enhancing NRL's physical properties and discusses its interactions with the human immune system. Furthermore, examines NRL's potential in creating wearable medical devices and biosensors for neurological disorders. To fully explore NRL's potential in addressing important medical conditions, we emphasize throughout this review the importance of interdisciplinary research and collaboration. In conclusion, this review advances our understanding of NRL's role in biomedical and biotechnological applications, offering insights into its diverse applications and promising opportunities for future development.


Subject(s)
Biocompatible Materials , Drug Delivery Systems , Latex , Regenerative Medicine , Rubber , Humans , Biocompatible Materials/chemistry , Latex/chemistry , Regenerative Medicine/methods , Rubber/chemistry , Animals , Wound Healing/drug effects
2.
Acta Biomater ; 173: 231-246, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38465268

ABSTRACT

Enterocutaneous fistula (ECF) is a severe medical condition where an abnormal connection forms between the gastrointestinal tract and skin. ECFs are, in most cases, a result of surgical complications such as missed enterotomies or anastomotic leaks. The constant leakage of enteric and fecal contents from the fistula site leads to skin breakdown and increases the risk of infection. Despite advances in surgical techniques and postoperative management, ECF accounts for significant mortality rates, estimated between 15-20%, and causes debilitating morbidity. Therefore, there is a critical need for a simple and effective method to seal and heal ECF. Injectable hydrogels with combined properties of robust mechanical properties and cell infiltration/proliferation have the potential to block and heal ECF. Herein, we report the development of an injectable nanoengineered adhesive hydrogel (INAH) composed of a synthetic nanosilicate (Laponite®) and a gelatin-dopamine conjugate for treating ECF. The hydrogel undergoes fast cross-linking using a co-injection method, resulting in a matrix with improved mechanical and adhesive properties. INAH demonstrates appreciable blood clotting abilities and is cytocompatible with fibroblasts. The adhesive properties of the hydrogel are demonstrated in ex vivo adhesion models with skin and arteries, where the volume stability in the hydrated internal environment facilitates maintaining strong adhesion. In vivo assessments reveal that the INAH is biocompatible, supporting cell infiltration and extracellular matrix deposition while not forming fibrotic tissue. These findings suggest that this INAH holds promising translational potential for sealing and healing ECF.


Subject(s)
Intestinal Fistula , Tissue Adhesives , Humans , Hydrogels/pharmacology , Adhesives , Gelatin , Intestinal Fistula/therapy
3.
Pharmaceuticals (Basel) ; 17(3)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38543112

ABSTRACT

SMADs are the canonical intracellular effector proteins of the TGF-ß (transforming growth factor-ß). SMADs translocate from plasma membrane receptors to the nucleus regulated by many SMAD-interacting proteins through phosphorylation and other post-translational modifications that govern their nucleocytoplasmic shuttling and subsequent transcriptional activity. The signaling pathway of TGF-ß/SMAD exhibits both tumor-suppressing and tumor-promoting phenotypes in epithelial-derived solid tumors. Collectively, the pleiotropic nature of TGF-ß/SMAD signaling presents significant challenges for the development of effective cancer therapies. Here, we review preclinical studies that evaluate the efficacy of inhibitors targeting major SMAD-regulating and/or -interacting proteins, particularly enzymes that may play important roles in epithelial or mesenchymal compartments within solid tumors.

4.
Biochem Biophys Res Commun ; 703: 149575, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38382357

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy, with a median survival of less than 12 months and a 5-year survival of less than 10 %. Here, we have established an image-based screening pipeline for quantifying single PDAC spheroid dynamics in genetically and phenotypically diverse PDAC cell models. Wild-type KRas PDAC cells formed tight/compact spheroids - compaction of these structures was completely blocked by cytoplasmic dynein and focal adhesion kinase (FAK) inhibitors. In contrast, PDAC cells containing mutant KRas formed loosely aggregated spheroids that grew significantly slower following inhibition of polo-like kinase 1 (PLK1) or focal adhesion kinase (FAK). Independent of genetic background, multicellular PDAC-mesenchymal stromal cell (MSC) spheroids self-organized into structures with an MSC-dominant core. The inclusion of MSCs into wild-type KRas PDAC spheroids modestly affected their compaction; however, MSCs significantly increased the compaction and growth of mutant KRas PDAC spheroids. Notably, exogenous collagen 1 potentiated PANC1 spheroid compaction while ITGA1 knockdown in PANC1 cells blocked MSC-induced PANC1 spheroid compaction. In agreement with a role for collagen-based integrin adhesion complexes in stromal cell-induced PDAC phenotypes, we also discovered that MSC-induced PANC1 spheroid growth was completely blocked by the ITGB1 immunoneutralizing antibody mAb13. Finally, multiplexed single-cell immunohistochemical analysis of a 25 patient PDAC tissue microarray revealed a relationship between decreased variance in Spearman r correlation for ITGA1 and PLK1 expression within the tumor cell compartment of PDAC in patients with advanced disease stage, and elevated expression of both ITGA1 and PLK1 in PDAC was found to be associated with decreased patient survival. Taken together, this work uncovers new therapeutic vulnerabilities in PDAC that are relevant to the progression of this stromal cell-rich malignancy and which may reveal strategies for improving patient outcomes.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Early Detection of Cancer , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/pathology , Collagen/metabolism , Cell-Matrix Junctions/metabolism , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Cell Line, Tumor
5.
Biosensors (Basel) ; 14(2)2024 Feb 04.
Article in English | MEDLINE | ID: mdl-38392005

ABSTRACT

The convergence of microfluidics and organ-on-a-chip (OoC) technologies has revolutionized our ability to create advanced in vitro models that recapitulate complex physiological processes [...].


Subject(s)
Microfluidics , Tissue Engineering , Microphysiological Systems , Drug Evaluation, Preclinical , Lab-On-A-Chip Devices
6.
Adv Healthc Mater ; : e2302331, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38359321

ABSTRACT

Patient-derived organoids (PDOs) developed ex vivo and in vitro are increasingly used for therapeutic screening. They provide a more physiologically relevant model for drug discovery and development compared to traditional cell lines. However, several challenges remain to be addressed to fully realize the potential of PDOs in therapeutic screening. This paper summarizes recent advancements in PDO development and the enhancement of PDO culture models. This is achieved by leveraging materials engineering and microfabrication technologies, including organs-on-a-chip and droplet microfluidics. Additionally, this work discusses the application of PDOs in therapy screening to meet diverse requirements and overcome bottlenecks in cancer treatment. Furthermore, this work introduces tools for data processing and analysis of organoids, along with their microenvironment. These tools aim to achieve enhanced readouts. Finally, this work explores the challenges and future perspectives of using PDOs in drug development and personalized screening for cancer patients.

7.
Gels ; 10(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38247769

ABSTRACT

Neo-tissue formation and host tissue regeneration determine the success of cardiac tissue engineering where functional hydrogel scaffolds act as cardiac (extracellular matrix) ECM mimic. Translationally, the hydrogel templates promoting neo-cardiac tissue formation are currently limited; however, they are highly demanding in cardiac tissue engineering. The current study focused on the development of a panel of four chitosan-based polyelectrolyte hydrogels as cardiac scaffolds facilitating neo-cardiac tissue formation to promote cardiac regeneration. Chitosan-PEG (CP), gelatin-chitosan-PEG (GCP), hyaluronic acid-chitosan-PEG (HACP), and combined CP (CoCP) polyelectrolyte hydrogels were engineered by solvent casting and assessed for physiochemical, thermal, electrical, biodegradable, mechanical, and biological properties. The CP, GCP, HACP, and CoCP hydrogels exhibited excellent porosity (4.24 ± 0.18, 13.089 ± 1.13, 12.53 ± 1.30 and 15.88 ± 1.10 for CP, GCP, HACP and CoCP, respectively), water profile, mechanical strength, and amphiphilicity suitable for cardiac tissue engineering. The hydrogels were hemocompatible as evident from the negligible hemolysis and RBC aggregation and increased adsorption of plasma albumin. The hydrogels were cytocompatible as evident from the increased viability by MTT (>94% for all the four hydrogels) assay and direct contact assay. Also, the hydrogels supported the adhesion, growth, spreading, and proliferation of H9c2 cells as unveiled by rhodamine staining. The hydrogels promoted neo-tissue formation that was proven using rat and swine myocardial tissue explant culture. Compared to GCP and CoCP, CP and HACP were superior owing to the cell viability, hemocompatibility, and conductance, resulting in the highest degree of cytoskeletal organization and neo-tissue formation. The physiochemical and biological performance of these hydrogels supported neo-cardiac tissue formation. Overall, the CP, GCP, HACP, and CoCP hydrogel systems promise novel translational opportunities in regenerative cardiology.

8.
J Control Release ; 365: 744-758, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38072085

ABSTRACT

Amphotericin B (AmB) is the gold standard for antifungal drugs. However, AmB systemic administration is restricted because of its side effects. Here, we report AmB loaded in natural rubber latex (NRL), a sustained delivery system with low toxicity, which stimulates angiogenesis, cell adhesion and accelerates wound healing. Physicochemical characterizations showed that AmB did not bind chemically to the polymeric matrix. Electronic and topographical images showed small crystalline aggregates from AmB crystals on the polymer surface. About 56.6% of AmB was released by the NRL in 120 h. However, 33.6% of this antifungal was delivered in the first 24 h due to the presence of AmB on the polymer surface. The biomaterial's excellent hemo- and cytocompatibility with erythrocytes and human dermal fibroblasts (HDF) confirmed its safety for dermal wound application. Antifungal assay against Candida albicans showed that AmB-NRL presented a dose-dependent behavior with an inhibition halo of 30.0 ± 1.0 mm. Galleria mellonella was employed as an in vivo model for C. albicans infection. Survival rates of 60% were observed following the injection of AmB (0.5 mg.mL-1) in G. mellonella larvae infected by C. albicans. Likewise, AmB-NRL (0.5 mg.mL-1) presented survival rates of 40%, inferring antifungal activity against fungus. Thus, NRL adequately acts as an AmB-sustained release matrix, which is an exciting approach, since this antifungal is toxic at high concentrations. Our findings suggest that AmB-NRL is an efficient, safe, and reasonably priced ($0.15) dressing for the treatment of cutaneous fungal infections.


Subject(s)
Candidiasis , Wound Infection , Humans , Amphotericin B , Antifungal Agents/chemistry , Bandages , Candida albicans , Candidiasis/drug therapy , Latex , Microbial Sensitivity Tests , Wound Infection/drug therapy
9.
Tissue Eng Part B Rev ; 30(1): 1-14, 2024 02.
Article in English | MEDLINE | ID: mdl-37294202

ABSTRACT

Myocardial infarction results in the significant loss of cardiomyocytes (CMs) due to the ischemic injury following coronary occlusion leading to impaired contractility, fibrosis, and ultimately heart failure. Stem cell therapy emerged as a promising regenerative strategy to replenish the otherwise terminally differentiated CM to restore cardiac function. Multiple strategies have been applied to successfully differentiate diverse stem cell populations into CM-like phenotypes characterized by the expression status of signature biomarkers and observable spontaneous contractions. This article discusses the current understanding and applications of various stem cell phenotypes to drive the differentiation machinery toward CM-like lineage. Impact Statement Ischemic heart disease (IHD) extensively affects a large proportion of the population worldwide. Unfortunately, current treatments for IHD are insufficient to restore cardiac effectiveness and functionality. A growing field in regenerative cardiology explores the potential for stem cell therapy following cardiovascular ischemic episodes. The thorough understanding regarding the potential and shortcomings of translational approaches to drive versatile stem cells to cardiomyocyte lineage paves the way for multiple opportunities for next-generation cardiac management.


Subject(s)
Myocardial Infarction , Myocytes, Cardiac , Humans , Myocytes, Cardiac/metabolism , Regeneration , Myocardial Infarction/metabolism , Myocardial Infarction/therapy , Stem Cell Transplantation , Cell Differentiation
10.
Biomater Adv ; 157: 213739, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38154400

ABSTRACT

Advances and the discovery of new biomaterials have opened new frontiers in regenerative medicine. These biomaterials play a key role in current medicine by improving the life quality or even saving the lives of millions of people. Since the 2000s, Natural Rubber Latex (NRL) has been employed as wound dressings, mechanical barrier for Guided Bone Regeneration (GBR), matrix for drug delivery, and grafting. NRL is a natural polymer that can stimulate cell proliferation, neoangiogenesis, and extracellular matrix (ECM) formation. Furthermore, it is well established that proteins and other biologically active molecules present in the Natural Latex Serum (NLS) are responsible for the biological properties of NRL. NLS can be obtained from NRL by three main methods, namely (i) Centrifugation (fractionation of NRL in distinct fractions), (ii) Coagulation and sedimentation (coagulating NRL to separate the NLS from rubber particles), and (iii) Alternative extraction process (elution from NRL membrane). In this review, the chemical composition, physicochemical properties, toxicity, and other biological information such as osteogenesis, vasculogenesis, adhesion, proliferation, antimicrobial behavior, and antitumoral activity of NLS, as well as some of its medical instruments and devices are discussed. The progress in NLS applications in the biomedical field, more specifically in cell cultures, alternative animals, regular animals, and clinical trials are also discussed. An overview of the challenges and future directions of the applications of NLS and its derivatives in tissue engineering for hard and soft tissue regeneration is also given.


Subject(s)
Latex Hypersensitivity , Latex , Animals , Humans , Allergens , Proteins , Biocompatible Materials
11.
JPhys Mater ; 7(1): 012502, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38144214

ABSTRACT

This Roadmap on drug delivery aims to cover some of the most recent advances in the field of materials for drug delivery systems (DDSs) and emphasizes the role that multifunctional materials play in advancing the performance of modern DDSs in the context of the most current challenges presented. The Roadmap is comprised of multiple sections, each of which introduces the status of the field, the current and future challenges faced, and a perspective of the required advances necessary for biomaterial science to tackle these challenges. It is our hope that this collective vision will contribute to the initiation of conversation and collaboration across all areas of multifunctional materials for DDSs. We stress that this article is not meant to be a fully comprehensive review but rather an up-to-date snapshot of different areas of research, with a minimal number of references that focus upon the very latest research developments.

12.
Gels ; 9(10)2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37888397

ABSTRACT

Increased prevalence of cardiovascular disease and potentially life-threatening complications of myocardial infarction (MI) has led to emerging therapeutic approaches focusing on myocardial regeneration and restoration of physiologic function following infarction. Extracellular vesicle (EV) technology has gained attention owing to the biological potential to modulate cellular immune responses and promote the repair of damaged tissue. Also, EVs are involved in local and distant cellular communication following damage and play an important role in initiating the repair process. Vesicles derived from stem cells and cardiomyocytes (CM) are of particular interest due to their ability to promote cell growth, proliferation, and angiogenesis following MI. Although a promising candidate for myocardial repair, EV technology is limited by the short retention time of vesicles and rapid elimination by the body. There have been several successful attempts to address this shortcoming, which includes hydrogel technology for the sustained bioavailability of EVs. This review discusses and summarizes current understanding regarding EV technology in the context of myocardial repair.

13.
Macromol Biosci ; 23(12): e2300276, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37534566

ABSTRACT

Several microfabrication technologies have been used to engineer native-like skeletal muscle tissues. However, the successful development of muscle remains a significant challenge in the tissue engineering field. Muscle tissue engineering aims to combine muscle precursor cells aligned within a highly organized 3D structure and biological factors crucial to support cell differentiation and maturation into functional myotubes and myofibers. In this study, the use of 3D bioprinting is proposed for the fabrication of muscle tissues using gelatin methacryloyl (GelMA) incorporating sustained insulin-like growth factor-1 (IGF-1)-releasing microparticles and myoblast cells. This study hypothesizes that functional and mature myotubes will be obtained more efficiently using a bioink that can release IGF-1 sustainably for in vitro muscle engineering. Synthesized microfluidic-assisted polymeric microparticles demonstrate successful adsorption of IGF-1 and sustained release of IGF-1 at physiological pH for at least 21 days. Incorporating the IGF-1-releasing microparticles in the GelMA bioink assisted in promoting the alignment of myoblasts and differentiation into myotubes. Furthermore, the myotubes show spontaneous contraction in the muscle constructs bioprinted with IGF-1-releasing bioink. The proposed bioprinting strategy aims to improve the development of new therapies applied to the regeneration and maturation of muscle tissues.


Subject(s)
Bioprinting , Tissue Scaffolds , Tissue Scaffolds/chemistry , Insulin-Like Growth Factor I/pharmacology , Tissue Engineering , Muscle, Skeletal/physiology , Muscle Fibers, Skeletal , Hydrogels/pharmacology , Hydrogels/chemistry , Gelatin/pharmacology , Gelatin/chemistry , Printing, Three-Dimensional
14.
Adv Sci (Weinh) ; 10(24): e2301406, 2023 08.
Article in English | MEDLINE | ID: mdl-37271889

ABSTRACT

Developing theranostic devices to detect bleeding and effectively control hemorrhage in the prehospital setting is an unmet medical need. Herein, an all-in-one theranostic platform is presented, which is constructed by sandwiching silk fibroin (SF) between two silver nanowire (AgNW) based conductive electrodes to non-enzymatically diagnose local bleeding and stop the hemorrhage at the wound site. Taking advantage of the hemostatic property of natural SF, the device is composed of a shape-memory SF sponge, facilitating blood clotting, with ≈82% reduction in hemostatic time in vitro as compared with untreated blood. Furthermore, this sandwiched platform serves as a capacitive sensor that can detect bleeding and differentiate between blood and other body fluids (i.e., serum and water) via capacitance change. In addition, the AgNW electrode endows anti-infection efficiency against Escherichia coli and Staphylococcus aureus. Also, the device shows excellent biocompatibility and gradually biodegrades in vivo with no major local or systemic inflammatory responses. More importantly, the theranostic platform presents considerable hemostatic efficacy comparable with a commercial hemostat, Dengen, in rat liver bleeding models. The theranostic platform provides an unexplored strategy for the intelligent management of hemorrhage, with the potential to significantly improve patients' well-being through the integration of diagnostic and therapeutic capabilities.


Subject(s)
Fibroins , Hemostatics , Nanowires , Rats , Animals , Precision Medicine , Silver/therapeutic use , Hemorrhage/drug therapy , Hemostatics/therapeutic use , Hemostatics/metabolism
15.
Biofabrication ; 15(4)2023 07 20.
Article in English | MEDLINE | ID: mdl-37348491

ABSTRACT

Three-dimensional (3D)in vitrotumor models that can capture the pathophysiology of human tumors are essential for cancer biology and drug development. However, simulating the tumor microenvironment is still challenging because it consists of a heterogeneous mixture of various cellular components and biological factors. In this regard, current extracellular matrix (ECM)-mimicking hydrogels used in tumor tissue engineering lack physical interactions that can keep biological factors released by encapsulated cells within the hydrogel and improve paracrine interactions. Here, we developed a nanoengineered ion-covalent cross-linkable bioink to construct 3D bioprinted organotypic tumor models. The bioink was designed to implement the tumor ECM by creating an interpenetrating network composed of gelatin methacryloyl (GelMA), a light cross-linkable polymer, and synthetic nanosilicate (Laponite) that exhibits a unique ionic charge to improve retention of biological factors released by the encapsulated cells and assist in paracrine signals. The physical properties related to printability were evaluated to analyze the effect of Laponite hydrogel on bioink. Low GelMA (5%) with high Laponite (2.5%-3.5%) composite hydrogels and high GelMA (10%) with low Laponite (1.0%-2.0%) composite hydrogels showed acceptable mechanical properties for 3D printing. However, a low GelMA composite hydrogel with a high Laponite content could not provide acceptable cell viability. Fluorescent cell labeling studies showed that as the proportion of Laponite increased, the cells became more aggregated to form larger 3D tumor structures. Reverse transcription-polymerase chain reaction (RT-qPCR) and western blot experiments showed that an increase in the Laponite ratio induces upregulation of growth factor and tissue remodeling-related genes and proteins in tumor cells. In contrast, cell cycle and proliferation-related genes were downregulated. On the other hand, concerning fibroblasts, the increase in the Laponite ratio indicated an overall upregulation of the mesenchymal phenotype-related genes and proteins. Our study may provide a rationale for using Laponite-based hydrogels in 3D cancer modeling.


Subject(s)
Bioprinting , Neoplasms , Humans , Tissue Scaffolds/chemistry , Bioprinting/methods , Tissue Engineering/methods , Gelatin/chemistry , Printing, Three-Dimensional , Hydrogels/pharmacology , Hydrogels/chemistry , Biological Factors , Tumor Microenvironment
16.
Int J Biol Macromol ; 242(Pt 1): 124779, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37172697

ABSTRACT

Psoriasis is a disease that causes keratinocytes to proliferate ten times faster than normal, resulting in chronic inflammation and immune cell infiltration in the skin. Aloe vera (A. vera) creams have been used topically for treating psoriasis because they contain several antioxidant species; however, they have several limitations. Natural rubber latex (NRL) has been used as occlusive dressings to promote wound healing by stimulating cell proliferation, neoangiogenesis, and extracellular matrix formation. In this work, we developed a new A. vera-releasing NRL dressing by a solvent casting method to load A. vera into NRL. FTIR and rheological analyzes revealed no covalent interactions between A. vera and NRL in the dressing. We observed that 58.8 % of the loaded A. vera, present on the surface and inside the dressing, was released after 4 days. Biocompatibility and hemocompatibility were validated in vitro using human dermal fibroblasts and sheep blood, respectively. We observed that ~70 % of the free antioxidant properties of A. vera were preserved, and the total phenolic content was 2.31-fold higher than NRL alone. In summary, we combined the antipsoriatic properties of A. vera with the healing activity of NRL to generate a novel occlusive dressing that may be indicated for the management and/or treatment of psoriasis symptoms simply and economically.


Subject(s)
Aloe , Psoriasis , Humans , Animals , Sheep , Rubber , Latex , Antioxidants/pharmacology , Psoriasis/drug therapy , Bandages
17.
Adv Healthc Mater ; 12(27): e2301096, 2023 10.
Article in English | MEDLINE | ID: mdl-37256647

ABSTRACT

Peptide-based hydrogel biomaterials have emerged as an excellent strategy for immune system modulation. Peptide-based hydrogels are supramolecular materials that self-assemble into various nanostructures through various interactive forces (i.e., hydrogen bonding and hydrophobic interactions) and respond to microenvironmental stimuli (i.e., pH, temperature). While they have been reported in numerous biomedical applications, they have recently been deemed promising candidates to improve the efficacy of cancer immunotherapies and treatments. Immunotherapies seek to harness the body's immune system to preemptively protect against and treat various diseases, such as cancer. However, their low efficacy rates result in limited patient responses to treatment. Here, the immunomaterial's potential to improve these efficacy rates by either functioning as immune stimulators through direct immune system interactions and/or delivering a range of immune agents is highlighted. The chemical and physical properties of these peptide-based materials that lead to immuno modulation and how one may design a system to achieve desired immune responses in a controllable manner are discussed. Works in the literature that reports peptide hydrogels as adjuvant systems and for the delivery of immunotherapies are highlighted. Finally, the future trends and possible developments based on peptide hydrogels for cancer immunotherapy applications are discussed.


Subject(s)
Nanostructures , Neoplasms , Humans , Hydrogels/chemistry , Immunotherapy , Peptides/chemistry , Nanostructures/chemistry , Neoplasms/therapy
18.
Adv Sci (Weinh) ; 10(23): e2204681, 2023 08.
Article in English | MEDLINE | ID: mdl-37217831

ABSTRACT

Aerogel-based biomaterials are increasingly being considered for biomedical applications due to their unique properties such as high porosity, hierarchical porous network, and large specific pore surface area. Depending on the pore size of the aerogel, biological effects such as cell adhesion, fluid absorption, oxygen permeability, and metabolite exchange can be altered. Based on the diverse potential of aerogels in biomedical applications, this paper provides a comprehensive review of fabrication processes including sol-gel, aging, drying, and self-assembly along with the materials that can be used to form aerogels. In addition to the technology utilizing aerogel itself, it also provides insight into the applicability of aerogel based on additive manufacturing technology. To this end, how microfluidic-based technologies and 3D printing can be combined with aerogel-based materials for biomedical applications is discussed. Furthermore, previously reported examples of aerogels for regenerative medicine and biomedical applications are thoroughly reviewed. A wide range of applications with aerogels including wound healing, drug delivery, tissue engineering, and diagnostics are demonstrated. Finally, the prospects for aerogel-based biomedical applications are presented. The understanding of the fabrication, modification, and applicability of aerogels through this study is expected to shed light on the biomedical utilization of aerogels.


Subject(s)
Biocompatible Materials , Tissue Engineering , Desiccation/methods , Wound Healing
19.
Biofabrication ; 15(2)2023 02 06.
Article in English | MEDLINE | ID: mdl-35390777

ABSTRACT

Infectious diseases remain a public healthcare concern worldwide. Amidst the pandemic of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 infection, increasing resources have been diverted to investigate therapeutics targeting the COVID-19 spike glycoprotein and to develop various classes of vaccines. Most of the current investigations employ two-dimensional (2D) cell culture and animal models. However, 2D culture negates the multicellular interactions and three-dimensional (3D) microenvironment, and animal models cannot mimic human physiology because of interspecies differences. On the other hand, organ-on-a-chip (OoC) devices introduce a game-changer to model viral infections in human tissues, facilitating high-throughput screening of antiviral therapeutics. In this context, this review provides an overview of thein vitroOoC-based modeling of viral infection, highlighting the strengths and challenges for the future.


Subject(s)
COVID-19 , Virus Diseases , Animals , Humans , Microphysiological Systems
20.
Adv Funct Mater ; 33(51)2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38558868

ABSTRACT

Sac embolization of abdominal aortic aneurysms (AAAs) remains clinically limited by endoleak recurrences. These recurrences are correlated with recanalization due to the presence of endothelial lining and matrix metalloproteinases (MMPs)-mediated aneurysm progression. This study incorporated doxycycline (DOX), a well-known sclerosant and MMPs inhibitor, into a shear-thinning biomaterial (STB)-based vascular embolizing hydrogel. The addition of DOX was expected to improve embolizing efficacy while preventing endoleaks by inhibiting MMP activity and promoting endothelial removal. The results showed that STBs containing 4.5% w/w silicate nanoplatelet and 0.3% w/v of DOX were injectable and had a 2-fold increase in storage modulus compared to those without DOX. STB-DOX hydrogels also reduced clotting time by 33% compared to untreated blood. The burst release of DOX from the hydrogels showed sclerosing effects after 6 h in an ex vivo pig aorta model. Sustained release of DOX from hydrogels on endothelial cells showed MMP inhibition (ca. an order of magnitude larger than control groups) after 7 days. The hydrogels successfully occluded a patient-derived abdominal aneurysm model at physiological blood pressures and flow rates. The sclerosing and MMP inhibition characteristics in the engineered multifunctional STB-DOX hydrogels may provide promising opportunities for the efficient embolization of aneurysms in blood vessels.

SELECTION OF CITATIONS
SEARCH DETAIL
...