Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
J Am Chem Soc ; 146(18): 12750-12757, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38669102

ABSTRACT

Interest in applying proton-coupled electron transfer (PCET) reagents in reductive electro- and photocatalysis requires strategies that mitigate the competing hydrogen evolution reaction. Photoexcitation of a PCET donor to a charge-separated state (CSS) can produce a powerful H-atom donor capable of being electrochemically recycled at a comparatively anodic potential corresponding to its ground state. However, the challenge is designing a mediator with a sufficiently long-lived excited state for bimolecular reactivity. Here, we describe a powerful ferrocene-derived photoelectrochemical PCET mediator exhibiting an unusually long-lived CSS (τ ∼ 0.9 µs). In addition to detailed photophysical studies, proof-of-concept stoichiometric and catalytic proton-coupled reductive transformations are presented, which illustrate the promise of this approach.

2.
J Am Chem Soc ; 146(1): 954-960, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38156951

ABSTRACT

Harnessing sunlight via photosensitizing molecules is key for novel optical applications and solar-to-chemical energy conversion. Exploiting abundant metals such as iron is attractive but becomes challenging due to typically fast nonradiative relaxation processes. In this work, we report on the luminescence and excited-state reactivity of the heteroleptic [FeIII(pzTp)(CN)3]- complex (pzTp = tetrakis(pyrazolyl)borate), which incorporates a σ-donating trispyrazolyl chelate ligand and three monodentate σ-donating and π-accepting cyanide ligands. Contrary to the nonemissive [Fe(CN)6]3-, a broad emission band centered at 600 nm at room temperature has been recorded for the heteroleptic analogue attributed to the radiative deactivation from a 2LMCT excited state with a luminescence quantum yield of 0.02% and a lifetime of 80 ps in chloroform at room temperature. Bimolecular reactivity of the 2LMCT excited state was successfully applied to different alcohol photo-oxidation, identifying a cyanide-H bonding as a key reaction intermediate. Finally, this research demonstrated the exciting potential of [Fe(pzTp)(CN)3]- as a photo-oxidant, paving the way for further exploration and development of emissive Fe-based photosensitizers competent for photochemical transformations.

3.
Microorganisms ; 11(7)2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37512975

ABSTRACT

In terrestrial hot springs, some members of the microbial mat community utilize sulfur chemical species for reduction and oxidization metabolism. In this study, the diversity and activity of sulfur-metabolizing bacteria were evaluated along a temperature gradient (48-69 °C) in non-acidic phototrophic mats of the Porcelana hot spring (Northern Patagonia, Chile) using complementary meta-omic methodologies and specific amplification of the aprA (APS reductase) and soxB (thiosulfohydrolase) genes. Overall, the key players in sulfur metabolism varied mostly in abundance along the temperature gradient, which is relevant for evaluating the possible implications of microorganisms associated with sulfur cycling under the current global climate change scenario. Our results strongly suggest that sulfate reduction occurs throughout the whole temperature gradient, being supported by different taxa depending on temperature. Assimilative sulfate reduction is the most relevant pathway in terms of taxonomic abundance and activity, whereas the sulfur-oxidizing system (Sox) is likely to be more diverse at low rather than at high temperatures. Members of the phylum Chloroflexota showed higher sulfur cycle-related transcriptional activity at 66 °C, with a potential contribution to sulfate reduction and oxidation to thiosulfate. In contrast, at the lowest temperature (48 °C), Burkholderiales and Acetobacterales (both Pseudomonadota, also known as Proteobacteria) showed a higher contribution to dissimilative sulfate reduction/oxidation as well as to thiosulfate metabolism. Cyanobacteriota and Planctomycetota were especially active in assimilatory sulfate reduction. Analysis of the aprA and soxB genes pointed to members of the order Burkholderiales (Gammaproteobacteria) as the most dominant and active along the temperature gradient for these genes. Changes in the diversity and activity of different sulfur-metabolizing bacteria in photoautotrophic microbial mats along a temperature gradient revealed their important role in hot spring environments, especially the main primary producers (Chloroflexota/Cyanobacteriota) and diazotrophs (Cyanobacteriota), showing that carbon, nitrogen, and sulfur cycles are highly linked in these extreme systems.

4.
Angew Chem Int Ed Engl ; 62(9): e202216693, 2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36592374

ABSTRACT

Whereas synthetically catalyzed nitrogen reduction (N2 R) to produce ammonia is widely studied, catalysis to instead produce hydrazine (N2 H4 ) has received less attention despite its considerable mechanistic interest. Herein, we disclose that irradiation of a tris(phosphine)borane (P3 B ) Fe catalyst, P3 B Fe+ , significantly alters its product profile to increase N2 H4 versus NH3 ; P3 B Fe+ is otherwise known to be highly selective for NH3 . We posit a key terminal hydrazido intermediate, P3 B Fe=NNH2 , as selectivity-determining. Whereas its singlet ground state undergoes protonation to liberate NH3 , a low-lying triplet excited state leads to reactivity at Nα and formation of N2 H4 . Associated electrochemical and spectroscopic studies establish that N2 H4 lies along a unique product pathway; NH3 is not produced from N2 H4 . Our findings are distinct from the canonical mechanism for hydrazine formation, which proceeds via a diazene (HN=NH) intermediate and showcase light as a tool to tailor selectivity.

5.
ACS Catal ; 13(1): 72-78, 2023 Jan 06.
Article in English | MEDLINE | ID: mdl-38487038

ABSTRACT

Electrocatalytic nitrogen reduction (N2R) mediated by well-defined molecular catalysts is poorly developed by comparison with other reductive electrocatalytic transformations. Herein, we explore the viability of electrocatalytic N2R mediated by a molecular Mo-PNP complex. A careful choice of acid, electrode material, and electrolyte mitigates electrode-mediated HER under direct electrolysis and affords up to 11.7 equiv of NH3 (Faradaic efficiency < 43%) at -1.89 V versus Fc+/Fc. The addition of a proton-coupled electron transfer (PCET) mediator has no effect. The data presented are rationalized by an initial electron transfer (ET) that sets the applied bias needed and further reveal an important impact of [Mo] concentration, thereby pointing to potential bimolecular steps (e.g., N2 splitting) as previously proposed during chemically driven N2R catalysis. Finally, facile reductive protonation of [Mo(N)Br(HPNP)] with pyridinium acids is demonstrated.

6.
Molecules ; 27(23)2022 Dec 03.
Article in English | MEDLINE | ID: mdl-36500606

ABSTRACT

Key organisms in the environment, such as oxygenic photosynthetic primary producers (photosynthetic eukaryotes and cyanobacteria), are responsible for fixing most of the carbon globally. However, they are affected by environmental conditions, such as temperature, which in turn affect their distribution. Globally, the cyanobacterium Fischerella thermalis is one of the main primary producers in terrestrial hot springs with thermal gradients up to 60 °C, but the mechanisms by which F. thermalis maintains its photosynthetic activity at these high temperatures are not known. In this study, we used molecular approaches and bioinformatics, in addition to photophysiological analyses, to determine the genetic activity associated with the energy metabolism of F. thermalis both in situ and in high-temperature (40 °C to 65 °C) cultures. Our results show that photosynthesis of F. thermalis decays with temperature, while increased transcriptional activity of genes encoding photosystem II reaction center proteins, such as PsbA (D1), could help overcome thermal damage at up to 60 °C. We observed that F. thermalis tends to lose copies of the standard G4 D1 isoform while maintaining the recently described D1INT isoform, suggesting a preference for photoresistant isoforms in response to the thermal gradient. The transcriptional activity and metabolic characteristics of F. thermalis, as measured by metatranscriptomics, further suggest that carbon metabolism occurs in parallel with photosynthesis, thereby assisting in energy acquisition under high temperatures at which other photosynthetic organisms cannot survive. This study reveals that, to cope with the harsh conditions of hot springs, F. thermalis has several compensatory adaptations, and provides emerging evidence for mixotrophic metabolism as being potentially relevant to the thermotolerance of this species. Ultimately, this work increases our knowledge about thermal adaptation strategies of cyanobacteria.


Subject(s)
Cyanobacteria , Electrons , Cyanobacteria/genetics , Cyanobacteria/metabolism , Photosynthesis , Carbon/metabolism
7.
J Am Chem Soc ; 144(43): 20118-20125, 2022 11 02.
Article in English | MEDLINE | ID: mdl-36264765

ABSTRACT

The generation of metal hydride intermediates during reductive electrocatalysis in the presence of acid most commonly leads to the hydrogen evolution reaction (HER). Redirecting the reactivity profile of such hydride intermediates toward the reduction of unsaturated substrates is an exciting opportunity in catalysis but presents a challenge in terms of catalyst selectivity. In this study, we demonstrate that a prototypical phosphine-supported Ni-HER catalyst can be repurposed toward the electrocatalytic reduction of a model substrate, methyl phenylpropiolate, via hydride transfer from a NiII-H when interfaced with a metallocene-derived proton-coupled electron transfer (PCET) mediator. Key to success is generation of the NiII-H at a potential pinned to that of the PCET mediator which is appreciably anodic of the onset of HER. Electrochemical, spectroscopic, and theoretical data point to a working mechanism where a PCET step from the metallocene-derived mediator to NiII generates NiIII-H and is rate-determining; the latter NiIII-H is then readily reduced to a NiII-H, which is competent for substrate reduction. Additional studies show that this tandem PCET-mediated hydride generation can afford high stereoselectivity (e.g., >20:1 Z/E using a phosphine-cobalt precatalyst with ethyl 2-heptynoate) and can also be used for the reduction of α,ß-unsaturated ketones.


Subject(s)
Hydrogen , Protons , Hydrogen/chemistry , Metallocenes , Electron Transport
8.
Plants (Basel) ; 11(19)2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36235326

ABSTRACT

Climate warming in the Antarctic tundra will affect locally dominant cryptogams. Being adapted to low temperatures and freezing, little is known about the response of the polar lichens' primary photochemistry to warming and desiccation. Since 2008, we have monitored the ecophysiological responses of lichens to the future warming scenario during a long-term warming experiment through open top chambers (OTCs) on Fildes Peninsula. We studied the primary photochemical response (potential Fv/Fm and effective efficiency of photosystem II YPSII) of different lichen taxa and morphotypes under desiccation kinetics and heat shock experiments. As lichens grow slowly, to observe changes during warming we methodologically focused on carbon and nitrogen content as well as on the stable isotope ratios. Endemic Himantormia lugubris showed the strongest effect of long-term warming on primary photochemistry, where PSII activity occurred at a lower %RWC inside the OTCs, in addition to higher Fv/Fm values at 30 °C in the heat shock kinetic treatment. In contrast, Usnea aurantiaco-atra did not show any effect of long-term warming but was active at a thallus RWC lower than 10%. Both Cladonia species were most affected by water stress, with Cladonia aff. gracilis showing no significant differences in primary photochemical responses between the warming and the control but a high sensibility to water deficiency, where, at 60% thallus RWC, the photochemical parameters began to decrease. We detected species-specific responses not only to long-term warming, but also to desiccation. On the other hand, the carbon content did not vary significantly among the species or because of the passive warming treatment. Similarly, the nitrogen content showed non-significant variation; however, the C/N ratio was affected, with the strongest C/N decrease in Cladonia borealis. Our results suggest that Antarctic lichens can tolerate warming and high temperature better than desiccation and that climate change may affect these species if it is associated with a decrease in water availability.

10.
Nature ; 609(7925): 71-76, 2022 09.
Article in English | MEDLINE | ID: mdl-36045240

ABSTRACT

New electrochemical ammonia (NH3) synthesis technologies are of interest as a complementary route to the Haber-Bosch process for distributed fertilizer generation, and towards exploiting ammonia as a zero-carbon fuel produced via renewably sourced electricity1. Apropos of these goals is a surge of fundamental research targeting heterogeneous materials as electrocatalysts for the nitrogen reduction reaction (N2RR)2. These systems generally suffer from poor stability and NH3 selectivity; the hydrogen evolution reaction (HER) outcompetes N2RR3. Molecular catalyst systems can be exquisitely tuned and offer an alternative strategy4, but progress has been thwarted by the same selectivity issue; HER dominates. Here we describe a tandem catalysis strategy that offers a solution to this puzzle. A molecular complex that can mediate an N2 reduction cycle is partnered with a co-catalyst that interfaces the electrode and an acid to mediate proton-coupled electron transfer steps, facilitating N-H bond formation at a favourable applied potential (-1.2 V versus Fc+/0) and overall thermodynamic efficiency. Certain intermediates of the N2RR cycle would be otherwise unreactive via uncoupled electron transfer or proton transfer steps. Structurally diverse complexes of several metals (W, Mo, Os, Fe) also mediate N2RR electrocatalysis at the same potential in the presence of the mediator, pointing to the generality of this tandem approach.

11.
Angew Chem Int Ed Engl ; 61(40): e202209075, 2022 Oct 04.
Article in English | MEDLINE | ID: mdl-35922381

ABSTRACT

A cobalt complex bearing a κ-N3 P2 ligand is presented (1+ or CoI (L), where L is (1E,1'E)-1,1'-(pyridine-2,6-diyl)bis(N-(3-(diphenylphosphanyl)propyl)ethan-1-imine). Complex 1+ is stable under air at oxidation state CoI thanks to the π-acceptor character of the phosphine groups. Electrochemical behavior of 1+ reveals a two-electron CoI /CoIII oxidation process and an additional one-electron reduction, which leads to an enhancement in the current due to hydrogen evolution reaction (HER) at Eonset =-1.6 V vs Fc/Fc+ . In the presence of 1 equiv of bis(trifluoromethane)sulfonimide, 1+ forms the cobalt hydride derivative CoIII (L)-H (22+ ), which has been fully characterized. Further addition of 1 equiv of CoCp*2 (Cp* is pentamethylcyclopentadienyl) affords the reduced CoII (L)-H (2+ ) species, which rapidly forms hydrogen and regenerates the initial CoI (L) (1+ ). The spectroscopic characterization of catalytic intermediates together with DFT calculations support an unusual bimolecular homolytic mechanism in the catalytic HER with 1+ .

12.
Inorg Chem ; 61(17): 6672-6678, 2022 May 02.
Article in English | MEDLINE | ID: mdl-35436099

ABSTRACT

Recent studies showcase reductive concerted proton-electron transfer (CPET) as a powerful strategy for transferring a net hydrogen atom to organic substrates; however, direct application of CPET in the context of C-C bond formation beyond homocoupling is underexplored. We report herein the expansion of electrocatalytic CPET (eCPET) using a Brønsted base-appended cobaltocene mediator ([CpCoCpNMe2][OTf]) with keto-olefin substrates that undergo cyclization subsequent to ketyl radical generation via eCPET. Using acetophenone-derived substrates with tethered acrylates as radical acceptors, in the presence of tosylic acid, we demonstrate that ketyl-olefin cyclization is achieved by characterization of cis-lactone and alkene products. Mechanistic analysis of this 2 H+/2 e- process reveals a mixed order in substrate and acid and a Hammett plot with a modest negative slope, highlighting the contribution of sequential CPET and ET/PT steps involved in the overall rate of the reaction and providing support for initial O-H bond formation. The ability to access ketyl radicals at comparatively mild reduction potentials via controlled potential electrolysis enables functional group tolerance across a range of substrates.


Subject(s)
Alkenes , Protons , Alkenes/chemistry , Catalysis , Cyclization , Electrons , Oxidation-Reduction
13.
Neural Netw ; 150: 364-376, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35358886

ABSTRACT

In a competitive game scenario, a set of agents have to learn decisions that maximize their goals and minimize their adversaries' goals at the same time. Besides dealing with the increased dynamics of the scenarios due to the opponents' actions, they usually have to understand how to overcome the opponent's strategies. Most of the common solutions, usually based on continual learning or centralized multi-agent experiences, however, do not allow the development of personalized strategies to face individual opponents. In this paper, we propose a novel model composed of three neural layers that learn a representation of a competitive game, learn how to map the strategy of specific opponents, and how to disrupt them. The entire model is trained online, using a composed loss based on a contrastive optimization, to learn competitive and multiplayer games. We evaluate our model on a pokemon duel scenario and the four-player competitive Chef's Hat card game. Our experiments demonstrate that our model achieves better performance when playing against offline, online, and competitive-specific models, in particular when playing against the same opponent multiple times. We also present a discussion on the impact of our model, in particular on how well it deals with on specific strategy learning for each of the two scenarios.


Subject(s)
Competitive Behavior , Reinforcement, Psychology , Learning
14.
Front Robot AI ; 9: 717193, 2022.
Article in English | MEDLINE | ID: mdl-35265672

ABSTRACT

Collaborative interactions require social robots to share the users' perspective on the interactions and adapt to the dynamics of their affective behaviour. Yet, current approaches for affective behaviour generation in robots focus on instantaneous perception to generate a one-to-one mapping between observed human expressions and static robot actions. In this paper, we propose a novel framework for affect-driven behaviour generation in social robots. The framework consists of (i) a hybrid neural model for evaluating facial expressions and speech of the users, forming intrinsic affective representations in the robot, (ii) an Affective Core, that employs self-organising neural models to embed behavioural traits like patience and emotional actuation that modulate the robot's affective appraisal, and (iii) a Reinforcement Learning model that uses the robot's appraisal to learn interaction behaviour. We investigate the effect of modelling different affective core dispositions on the affective appraisal and use this affective appraisal as the motivation to generate robot behaviours. For evaluation, we conduct a user study (n = 31) where the NICO robot acts as a proposer in the Ultimatum Game. The effect of the robot's affective core on its negotiation strategy is witnessed by participants, who rank a patient robot with high emotional actuation higher on persistence, while an impatient robot with low emotional actuation is rated higher on its generosity and altruistic behaviour.

15.
Front Robot AI ; 8: 669990, 2021.
Article in English | MEDLINE | ID: mdl-34336935

ABSTRACT

Reinforcement learning simulation environments pose an important experimental test bed and facilitate data collection for developing AI-based robot applications. Most of them, however, focus on single-agent tasks, which limits their application to the development of social agents. This study proposes the Chef's Hat simulation environment, which implements a multi-agent competitive card game that is a complete reproduction of the homonymous board game, designed to provoke competitive strategies in humans and emotional responses. The game was shown to be ideal for developing personalized reinforcement learning, in an online learning closed-loop scenario, as its state representation is extremely dynamic and directly related to each of the opponent's actions. To adapt current reinforcement learning agents to this scenario, we also developed the COmPetitive Prioritized Experience Replay (COPPER) algorithm. With the help of COPPER and the Chef's Hat simulation environment, we evaluated the following: (1) 12 experimental learning agents, trained via four different regimens (self-play, play against a naive baseline, PER, or COPPER) with three algorithms based on different state-of-the-art learning paradigms (PPO, DQN, and ACER), and two "dummy" baseline agents that take random actions, (2) the performance difference between COPPER and PER agents trained using the PPO algorithm and playing against different agents (PPO, DQN, and ACER) or all DQN agents, and (3) human performance when playing against two different collections of agents. Our experiments demonstrate that COPPER helps agents learn to adapt to different types of opponents, improving the performance when compared to off-line learning models. An additional contribution of the study is the formalization of the Chef's Hat competitive game and the implementation of the Chef's Hat Player Club, a collection of trained and assessed agents as an enabler for embedding human competitive strategies in social continual and competitive reinforcement learning.

16.
J Am Chem Soc ; 143(25): 9303-9307, 2021 06 30.
Article in English | MEDLINE | ID: mdl-34138550

ABSTRACT

Reductive concerted proton-electron transfer (CPET) is poorly developed for the reduction of C-C π-bonds, including for activated alkenes that can succumb to deleterious pathways (e.g., a competing hydrogen evolution reaction or oligomerization) in a standard electrochemical reduction. We demonstrate herein that selective hydrogenation of the C-C π-bond of fumarate esters can be achieved via electrocatalytic CPET (eCPET) using a CPET mediator comprising cobaltocene with a tethered Brønsted base. High selectivity for electrocatalytic hydrogenation is observed only when the mediator is present. Mechanistic analysis sheds light on two distinct kinetic regimes based on the substrate concentration: low fumarate concentrations operate via rate-limiting CPET followed by an electron-transfer/proton-transfer (ET/PT) step, whereas high concentrations operate via CPET followed by a rate-limiting ET/PT step.

17.
Angew Chem Int Ed Engl ; 60(34): 18639-18644, 2021 Aug 16.
Article in English | MEDLINE | ID: mdl-34015172

ABSTRACT

Water oxidation to dioxygen is one of the key reactions that need to be mastered for the design of practical devices based on water splitting with sunlight. In this context, water oxidation catalysts based on first-row transition metal complexes are highly desirable due to their low cost and their synthetic versatility and tunability through rational ligand design. A new family of dianionic bpy-amidate ligands of general formula H2 LNn- (LN is [2,2'-bipyridine]-6,6'-dicarboxamide) substituted with phenyl or naphthyl redox non-innocent moieties is described. A detailed electrochemical analysis of [(L4)Cu]2- (L4=4,4'-(([2,2'-bipyridine]-6,6'-dicarbonyl)bis(azanediyl))dibenzenesulfonate) at pH 11.6 shows the presence of a large electrocatalytic wave for water oxidation catalysis at an η=830 mV. Combined experimental and computational evidence, support an all ligand-based process with redox events taking place at the aryl-amide groups and at the hydroxido ligands.

18.
Microorganisms ; 9(1)2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33401391

ABSTRACT

Current warming in the Western Antarctic Peninsula (WAP) has multiple effects on the marine ecosystem, modifying the trophic web and the nutrient regime. In this study, the effect of decreased surface salinity on the marine microbial community as a consequence of freshening from nearby glaciers was investigated in Chile Bay, Greenwich Island, WAP. In the summer of 2016, samples were collected from glacier ice and transects along the bay for 16S rRNA gene sequencing, while in situ dilution experiments were conducted and analyzed using 16S rRNA gene sequencing and metatranscriptomic analysis. The results reveal that certain common seawater genera, such as Polaribacter, Pseudoalteromonas and HTCC2207, responded positively to decreased salinity in both the bay transect and experiments. The relative abundance of these bacteria slightly decreased, but their functional activity was maintained and increased the over time in the dilution experiments. However, while ice bacteria, such as Flavobacterium and Polaromonas, tolerated the increased salinity after mixing with seawater, their gene expression decreased considerably. We suggest that these bacterial taxa could be defined as sentinels of freshening events in the Antarctic coastal system. Furthermore, these results suggest that a significant portion of the microbial community is resilient and can adapt to disturbances, such as freshening due to the warming effect of climate change in Antarctica.

19.
SN Comput Sci ; 1(6): 321, 2020.
Article in English | MEDLINE | ID: mdl-33123687

ABSTRACT

Current state-of-the-art models for automatic facial expression recognition (FER) are based on very deep neural networks that are effective but rather expensive to train. Given the dynamic conditions of FER, this characteristic hinders such models of been used as a general affect recognition. In this paper, we address this problem by formalizing the FaceChannel, a light-weight neural network that has much fewer parameters than common deep neural networks. We introduce an inhibitory layer that helps to shape the learning of facial features in the last layer of the network and, thus, improving performance while reducing the number of trainable parameters. To evaluate our model, we perform a series of experiments on different benchmark datasets and demonstrate how the FaceChannel achieves a comparable, if not better, performance to the current state-of-the-art in FER. Our experiments include cross-dataset analysis, to estimate how our model behaves on different affective recognition conditions. We conclude our paper with an analysis of how FaceChannel learns and adapts the learned facial features towards the different datasets.

20.
J Am Chem Soc ; 142(41): 17434-17446, 2020 10 14.
Article in English | MEDLINE | ID: mdl-32935982

ABSTRACT

Water oxidation catalysis stands out as one of the most important reactions to design practical devices for artificial photosynthesis. Use of late first-row transition metal (TM) complexes provides an excellent platform for the development of inexpensive catalysts with exquisite control on their electronic and structural features via ligand design. However, the difficult access to their high oxidation states and the general labile character of their metal-ligand bonds pose important challenges. Herein, we explore a copper complex (12-) featuring an extended, π-delocalized, tetra-amidate macrocyclic ligand (TAML) as water oxidation catalyst and compare its activity to analogous systems with lower π-delocalization (22- and 32-). Their characterization evidences a special metal-ligand cooperativity in accommodating the required oxidative equivalents using 12- that is absent in 22- and 32-. This consists of charge delocalization promoted by easy access to different electronic states at a narrow energy range, corresponding to either metal-centered or ligand-centered oxidations, which we identify as an essential factor to stabilize the accumulated oxidative charges. This translates into a significant improvement in the catalytic performance of 12- compared to 22- and 32- and leads to one of the most active and robust molecular complexes for water oxidation at neutral pH with a kobs of 140 s-1 at an overpotential of only 200 mV. In contrast, 22- degrades under oxidative conditions, which we associate to the impossibility of efficiently stabilizing several oxidative equivalents via charge delocalization, resulting in a highly reactive oxidized ligand. Finally, the acyclic structure of 32- prevents its use at neutral pH due to acidic demetalation, highlighting the importance of the macrocyclic stabilization.

SELECTION OF CITATIONS
SEARCH DETAIL
...