Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38890256

ABSTRACT

The present study reports findings related to the treatment of polluted groundwater using macrophyte-assisted phytoremediation. The potential of three macrophyte species (Phragmites australis, Scirpus holoschoenus, and Typha angustifolia) to tolerate exposure to multi-metal(loid) polluted groundwater was first evaluated in mesocosms for 7- and 14-day batch testing. In the 7-day batch test, the polluted water was completely replaced and renewed after 7 days, while for 14 days exposure, the same polluted water, added in the first week, was maintained. The initial biochemical screening results of macrophytes indicated that the selected plants were more tolerant to the provided conditions with 14 days of exposure. Based on these findings, the plants were exposed to HRT regimes of 15 and 30 days. The results showed that P. australis and S. holoschoenus performed better than T. angustifolia, in terms of metal(loid) accumulation and removal, biomass production, and toxicity reduction. In addition, the translocation and compartmentalization of metal(loid)s were dose-dependent. At the 30-day loading rate (higher HRT), below-ground phytostabilization was greater than phytoaccumulation, whereas at the 15-day loading rate (lower HRT), below- and above-ground phytoaccumulation was the dominant metal(loid) removal mechanism. However, higher levels of toxicity were noted in the water at the 15-day loading rate. Overall, this study provides valuable insights for macrophyte-assisted phytoremediation of polluted (ground)water streams that can help to improve the design and implementation of phytoremediation systems.

2.
Environ Res ; 252(Pt 2): 118880, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38582421

ABSTRACT

Persistent, aged hydrocarbons in soil hinder remediation, posing a significant environmental threat. While bioremediation offers an environmentally friendly and cost-effective approach, its efficacy for complex contaminants relies on enhancing pollutant bioavailability. This study explores the potential of immobilized bacterial consortia combined with biochar and rhamnolipids to accelerate bioremediation of aged total petroleum hydrocarbon (TPH)-contaminated soil. Previous research indicates that biochar and biosurfactants can increase bioremediation rates, while mixed consortia offer sequential degradation and higher hydrocarbon mineralization. The present investigation aimed to assess whether combining these strategies could further enhance degradation in aged, complex soil matrices. The bioaugmentation (BA) with bacterial consortium increased the TPHs degradation in aged soil (over 20% compared to natural attenuation - NA). However, co-application of BA with biochar and rhamnolipid higher did not show a statistically prominent synergistic effect. While biochar application facilitated the maintenance of hydrocarbon degrading bacterial consortium in soil, the present study did not identify a direct influence in TPHs degradation. The biochar application in contaminated soil contributed to TPHs adsorption. Rhamnolipid alone slightly increased the TPHs biodegradation with NA, while the combined bioaugmentation treatment with rhamnolipid and biochar increased the degradation between 27.5 and 29.8%. These findings encourage further exploration of combining bioaugmentation with amendment, like biochar and rhamnolipid, for remediating diverse environmental matrices contaminated with complex and aged hydrocarbons.


Subject(s)
Biodegradation, Environmental , Charcoal , Glycolipids , Hydrocarbons , Soil Pollutants , Soil Pollutants/metabolism , Glycolipids/metabolism , Charcoal/chemistry , Hydrocarbons/metabolism , Soil Microbiology , Petroleum/metabolism , Soil/chemistry
3.
Article in English | MEDLINE | ID: mdl-38517632

ABSTRACT

The biodegradation of total petroleum hydrocarbon (TPH) in soil is very challenging due to the complex recalcitrant nature of hydrocarbon, hydrophobicity, indigenous microbial adaptation and competition, and harsh environmental conditions. This work further confirmed that limited natural attenuation of petroleum hydrocarbons (TPHs) (15% removal) necessitates efficient bioremediation strategies. Hence, a scaling-up experiment for testing and optimizing the use of biopiles for bioremediation of TPH polluted soils was conducted with three 500-kg pilots of polluted soil, and respective treatments were implemented: including control soil (CT), bioaugmentation and vermicompost treatment (BAVC), and a combined application of BAVC along with bioelectrochemical snorkels (BESBAVC), all maintained at 40% field capacity. This study identified that at pilot scale level, a successful application of BAVC treatment can achieve 90.3% TPH removal after 90 days. BAVC's effectiveness stemmed from synergistic mechanisms. Introduced microbial consortia were capable of TPH degradation, while vermicompost provided essential nutrients, enhanced aeration, and, potentially, acted as a biosorbent. Hence, it can be concluded that the combined application of BAVC significantly enhances TPH removal compared to natural attenuation. While the combined application of a bioelectrochemical snorkel (BES) with BAVC also showed a significant TPH removal, it did not differ statistically from the individual application of BAVC, under applied conditions. Further research is needed to optimize BES integration with BAVC for broader applicability. This study demonstrates BAVC as a scalable and mechanistically sound approach for TPH bioremediation in soil.

4.
Toxicology ; 504: 153783, 2024 May.
Article in English | MEDLINE | ID: mdl-38518840

ABSTRACT

Despite the wide application of graphene-based materials, the information of the toxicity associated to some specific derivatives such as aminated graphene oxide is scarce. Likewise, most of these studies analyse the pristine materials, while the available data regarding the harmful effects of degraded forms is very limited. In this work, the toxicity of graphene oxide (GO), aminated graphene oxide (GO-NH2), and their respective degraded forms (dGO and dGO-NH2) obtained after being submitted to high-intensity sonication was evaluated applying in vitro assays in different models of human exposure. Viability and ROS assays were performed on A549 and HT29 cells, while their skin irritation potential was tested on a reconstructed human epidermis model. The obtained results showed that GO-NH2 and dGO-NH2 substantially decrease cell viability in the lung and gastrointestinal models, being this reduction slightly higher in the cells exposed to the degraded forms. In contrast, this parameter was not affected by GO and dGO which, conversely, showed the ability to induce higher levels of ROS than the pristine and degraded aminated forms. Furthermore, none of the materials is skin irritant. Altogether, these results provide new insights about the potential harmful effects of the selected graphene-based nanomaterials in comparison with their degraded counterparts.


Subject(s)
Cell Survival , Graphite , Nanostructures , Reactive Oxygen Species , Graphite/toxicity , Graphite/chemistry , Humans , Cell Survival/drug effects , Reactive Oxygen Species/metabolism , A549 Cells , Nanostructures/toxicity , Nanostructures/chemistry , HT29 Cells , Skin Irritancy Tests/methods
5.
Biometals ; 37(1): 87-100, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37702876

ABSTRACT

Parsley (Petroselinum crispum) is herb with many biological and medicinal benefits for humans. However, growth on zinc (Zn) and cadmium (Cd) contaminated sites might get severely affected due to over accumulation of heavy metals (HM) in different plant tissues. Antioxidants play a crucial role in minimizing the negative effects of HM. The present study investigates the effects of Zn and Cd stress on P. crispum morphological parameters, enzymatic/non-enzymatic antioxidant profiling and metal accumulation in shoot/root. Plants were exposed to different concentrations of Zn (50, 100, 150 and 200 µM) and Cd (10, 20, 40 and 80 µM) along with control (no stress), in soil-less Hoagland's solution. The results showed that Zn and Cd substantially decrease the growth parameters with increased contents of malondialdehyde (MDA), hydrogen peroxide (H2O2), and electrolyte leakage (EL). Non-enzymatic antioxidant activities, like total phenolic contents (TPC) and ferric reducing antioxidant power (FRAP), were induced high in leaves only upon Cd stress and contrarily decreased upon Zn stress. Total flavonoid contents (TFC) were decreased under Zn and Cd stress. Enzymatic antioxidant activities like superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) were also strongly induced upon Cd stress. At the same time, SOD and guaiacol peroxidase (GPX) activity was induced significantly upon Zn stress. Cd uptake and accumulation was notably high in roots as compared to shoots, which suggests P. crispum have a reduced ability to translocate Cd towards aboveground parts (leaves). Additionally, strong induction of antioxidants by P. crispum under Cd stress might indicate the capacity to effectively re-modulate its physiological response. However, further investigations regarding other HMs and experiments at the molecular level are still needed.


Subject(s)
Metals, Heavy , Soil Pollutants , Humans , Antioxidants/pharmacology , Cadmium/pharmacology , Petroselinum/metabolism , Zinc/pharmacology , Hydrogen Peroxide , Metals, Heavy/pharmacology , Superoxide Dismutase/metabolism , Plant Roots/metabolism , Oxidative Stress
6.
N Biotechnol ; 79: 50-59, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38128697

ABSTRACT

Better understanding of macrophyte tolerance under long exposure times in real environmental matrices is crucial for phytoremediation and phytoattenuation strategies for aquatic systems. The metal(loid) attenuation ability of 10 emergent macrophyte species (Carex riparia, Cyperus longus, Cyperus rotundus, Iris pseudacorus, Juncus effusus, Lythrum salicaria, Menta aquatica, Phragmites australis, Scirpus holoschoenus, and Typha angustifolia) was investigated using real groundwater from an industrial site, over a 90-day exposure period. A "phytobial" treatment was included, with 3 plant growth-promoting rhizobacterial strains. Plants exposed to the polluted water generally showed similar or reduced aerial biomass compared to the controls, except for C. riparia. This species, along with M. aquatica, exhibited improved biomass after bioaugmentation. Phytoremediation mechanisms accounted for more than 60% of As, Cd, Cu, Ni, and Pb removal, whilst abiotic mechanisms contributed to ∼80% removal of Fe and Zn. Concentrations of metal(loid)s in the roots were generally between 10-100 times higher than in the aerial parts. The macrophytes in this work can be considered "underground attenuators", more appropriate for rhizostabilization strategies, especially L. salicaria, M. aquatica, S. holoschoenus, and T. angustifolia. For I. pseudacorus, C. longus, and C. riparia; harvesting the aerial parts could be a complementary phytoextraction approach to further remove Pb and Zn. Of all the plants, S. holoschoenus showed the best balance between biomass production and uptake of multiple metal(loid)s. Results also suggest that multiple phytostrategies may be possible for the same plant depending on the final remedial aim. Phytobial approaches need to be further assessed for each macrophyte species.


Subject(s)
Lead , Metals, Heavy , Poaceae , Plants , Biodegradation, Environmental , Biomass
7.
Sci Rep ; 13(1): 11846, 2023 07 22.
Article in English | MEDLINE | ID: mdl-37481626

ABSTRACT

The development of novel advanced nanomaterials (NMs) with outstanding characteristics for their use in distinct applications needs to be accompanied by the generation of knowledge on their potential toxicological impact, in particular, that derived from different occupational risk exposure routes, such as inhalation, ingestion, and skin contact. The harmful effects of novel graphene-metal oxide composites on human health are not well understood, many toxicological properties have not been investigated yet. The present study has evaluated several toxicological effects associated with graphene decorated with manganese oxide nanoparticles (GNA15), in a comparative assessment with those induced by simple graphene (G2), on human models representing inhalation (A549 cell line), ingestion (HT29 cell line) and dermal routes (3D reconstructed skin). Pristine and degraded forms of these NMs were included in the study, showing to have different physicochemical and toxicological properties. The degraded version of GNA15 (GNA15d) and G2 (G2d) exhibited clear structural differences with their pristine counterparts, as well as a higher release of metal ions. The viability of respiratory and gastrointestinal models was reduced in a dose-dependent manner in the presence of both GNA15 and G2 pristine and degraded forms. Besides this, all NMs induced the production of reactive oxygen species (ROS) in both models. However, the degraded forms showed to induce a higher cytotoxicity effect. In addition, we found that none of the materials produced irritant effects on 3D reconstructed skin when present in aqueous suspensions. These results provide novel insights into the potentially harmful effects of novel multicomponent NMs in a comprehensive manner. Furthermore, the integrity of the NMs can play a role in their toxicity, which can vary depending on their composition and the exposure route.


Subject(s)
Graphite , Nanoparticles , Nanostructures , Humans , Graphite/toxicity , Nanoparticles/toxicity , HT29 Cells
8.
Sens Actuators B Chem ; 379: 133165, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36536612

ABSTRACT

The initial stages of the pandemic caused by SARS-CoV-2 showed that early detection of the virus in a simple way is the best tool until the development of vaccines. Many different tests are invasive or need the patient to cough up or even drag a sample of mucus from the throat area. Besides, the manufacturing time has proven insufficient in pandemic conditions since they were out of stock in many countries. Here we show a new method of manufacturing virus sensors and a proof of concept with SARS-CoV-2. We found that a fluorogenic peptide substrate of the main protease of the virus (Mpro) can be covalently immobilized in a polymer, with which a cellulose-based material can be coated. These sensory labels fluoresce with a single saliva sample of a positive COVID-19 patient. The results matched with that of the antigen tests in 22 of 26 studied cases (85% success rate).

9.
J Environ Manage ; 326(Pt B): 116700, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36423411

ABSTRACT

Heavy metals (HMs) are indestructible and non-biodegradable. Phytoremediation presents an opportunity to transfer HMs from environmental matrices into plants, making it easy to translocate from one place to another. The ornate features of HMs' phytoremediation are biophilia and carbon neutrality, compared to the physical and chemical remediation methods. Some recent studies related to LCA also support that phytoremediation is technically more sustainable than competing technologies. However, one major post-application challenge associated with HMs phytoremediation is properly managing HMs contaminated biomass generated. Such a yield presents the problem of reintroducing HMs into the environment due to natural decomposition and release of plant sap from the harvested biomass. The transportation of high yields can also make phytoremediation economically inviable. This review presents the design of a sustainable phytoremediation strategy using an ever-evolving life cycle assessment tool. This review also discusses possible post-phytoremediation biomass management strategies for the HMs contaminated biomass management. These strategies include composting, leachate compaction, gasification, pyrolysis, torrefaction, and metal recovery. Further, the commercial outlook for properly utilizing HMs contaminated biomass was presented.


Subject(s)
Metals, Heavy , Soil Pollutants , Biodegradation, Environmental , Biomass , Soil Pollutants/analysis , Soil , Metals, Heavy/analysis , Plants
10.
Front Microbiol ; 13: 1006946, 2022.
Article in English | MEDLINE | ID: mdl-36519168

ABSTRACT

The study of the biological response of microbial cells interacting with natural and synthetic interfaces has acquired a new dimension with the development and constant progress of advanced omics technologies. New methods allow the isolation and analysis of nucleic acids, proteins and metabolites from complex samples, of interest in diverse research areas, such as materials sciences, biomedical sciences, forensic sciences, biotechnology and archeology, among others. The study of the bacterial recognition and response to surface contact or the diagnosis and evolution of ancient pathogens contained in archeological tissues require, in many cases, the availability of specialized methods and tools. The current review describes advances in in vitro and in silico approaches to tackle existing challenges (e.g., low-quality sample, low amount, presence of inhibitors, chelators, etc.) in the isolation of high-quality samples and in the analysis of microbial cells at genomic, transcriptomic, proteomic and metabolomic levels, when present in complex interfaces. From the experimental point of view, tailored manual and automatized methodologies, commercial and in-house developed protocols, are described. The computational level focuses on the discussion of novel tools and approaches designed to solve associated issues, such as sample contamination, low quality reads, low coverage, etc. Finally, approaches to obtain a systems level understanding of these complex interactions by integrating multi omics datasets are presented.

11.
Sci Rep ; 12(1): 20991, 2022 12 05.
Article in English | MEDLINE | ID: mdl-36471154

ABSTRACT

In the present study, a comparative human toxicity assessment between newly developed Mn3O4 nanoparticles with enhanced electrochemical properties (GNA35) and their precursor material (Mn3O4) was performed, employing different in vitro cellular models representing main exposure routes (inhalation, intestinal and dermal contact), namely the human alveolar carcinoma epithelial cell line (A549), the human colorectal adenocarcinoma cell line (HT29), and the reconstructed 3D human epidermal model EpiDerm. The obtained results showed that Mn3O4 and GNA35 harbour similar morphological characteristics, whereas differences were observed in relation to their surface area and electrochemical properties. In regard to their toxicological properties, both nanomaterials induced ROS in the A549 and HT29 cell lines, while cell viability reduction was only observed in the A549 cells. Concerning their skin irritation potential, the studied nanomaterials did not cause a reduction of the skin tissue viability in the test conditions nor interleukin 1 alpha (IL- 1 α) release. Therefore, they can be considered as not irritant nanomaterials according to EU and Globally Harmonized System of Classification and Labelling Chemicals. Our findings provide new insights about the potential harmful effects of Mn3O4 nanomaterials with different properties, demonstrating that the hazard assessment using different human in vitro models is a critical aspect to increase the knowledge on their potential impact upon different exposure routes.


Subject(s)
Irritants , Nanostructures , Humans , Irritants/toxicity , Skin Irritancy Tests/methods , Oxides , Nanostructures/toxicity
12.
Environ Pollut ; 315: 120472, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36272604

ABSTRACT

The biological effects induced by the pollutants present in soils, together with the chemical and physical characterizations, are good indicators to provide a general overview of their quality. However, the existence of studies where the toxicity associated to soils contaminated with mixtures of pollutants applying both in vitro and in vivo models are scarce. In this work, three soils (namely, Soil 001, Soil 002 and Soil 013) polluted with different concentrations of hydrocarbons and heavy metals were evaluated using different organisms representative of human (HepG2 human cell line) and environmental exposure (the yeast Saccharomyces cerevisiae, the Gram-negative bacterium Pseudomonas putida and, for the in vivo evaluation, the annelid Enchytraeus crypticus). In vitro assays showed that the soluble fraction of the Soil 001, which presented the highest levels of heavy metals, represented a great impact in the viability of the HepG2 cells and S. cerevisiae, while organic extracts from Soils 002 and 013 caused a slight decrease in the viability of HepG2 cells. In addition, in vivo experiments showed that Soils 001 and 013 affected the survival and the reproduction of E. crypticus. Altogether, these results provide a general overview of the potential hazards associated to three specific contaminated sites in a variety of organisms, showing how different concentrations of similar pollutants affect them, and highlights the relevance of testing both organic and soluble extracts when in vitro safety assays of soils are performed.


Subject(s)
Metals, Heavy , Soil Pollutants , Humans , Hydrocarbons , Metals, Heavy/analysis , Saccharomyces cerevisiae , Soil/chemistry , Soil Pollutants/analysis
13.
Chemosphere ; 307(Pt 1): 135638, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35817192

ABSTRACT

In the present work, the operational conditions for improving the degradation rates of Total Petroleum Hydrocarbons (TPHs) in contaminated soil from a machinery park were optimized at a microcosms scale along a 90-days incubation period. In this study, bioremediation strategies and an organic amendment have been tested to verify the remediation of soil contaminated with different hydrocarbons, mineral oils, and heavy metals. Specifically, designed biostimulation and bioaugmentation strategies were compared with and without adding vermicompost. The polluted soil harboring multiple contaminants, partially attenuated for years, was used. The initial profile showed enrichment in heavy linear alkanes, suggesting a previous moderate weathering. The application of vermicompost increased five and two times the amounts of available phosphorus (P) and exchangeable potassium (K), respectively, as a direct consequence of the organic amendment addition. The microbial activity increased due to soil acidification, which influenced the solubility of P and other micronutrients. It also impacted the predominance and variability of the different microbial groups and the incubation, as reflected by phospholipid fatty acid (PLFA) results. An increase in the alkaline phosphatases and proteases linked to bacterial growth was displayed. This stimulation of microbial metabolism correlated with the degradation rates since TPHs degradation' efficiency after vermicompost addition reached 32.5% and 34.4% of the initial hydrocarbon levels for biostimulation and bioaugmentation, respectively. Although Polycyclic Aromatic Hydrocarbons (PAHs) were less abundant in this soil, results also decreased, especially for the most abundant, the phenanthrene. Despite improving the degradation rates, results revealed that recalcitrant and hydrophobic petroleum compounds remained unchanged, indicating that mobility, linked to bioavailability, probably represents the limiting step for further soil recovery.


Subject(s)
Petroleum , Phenanthrenes , Polycyclic Aromatic Hydrocarbons , Soil Pollutants , Alkanes , Biodegradation, Environmental , Fatty Acids , Hydrocarbons/metabolism , Micronutrients , Minerals , Oils , Peptide Hydrolases , Petroleum/analysis , Phospholipids , Phosphoric Monoester Hydrolases , Phosphorus , Polycyclic Aromatic Hydrocarbons/analysis , Potassium , Soil/chemistry , Soil Microbiology , Soil Pollutants/analysis
14.
Phys Chem Chem Phys ; 24(22): 13678-13689, 2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35611946

ABSTRACT

Lithium silicates have attracted great attention in recent years due to their potential use as high-temperature (450-700 °C) sorbents for CO2 capture. Lithium orthosilicate (Li4SiO4) can theoretically adsorb CO2 in amounts up to 0.36 g CO2 per g Li4SiO4. The development of new Li4SiO4-based sorbents is hindered by a lack of knowledge of the mechanisms ruling CO2 adsorption on Li4SiO4, especially for eutectic mixtures. In this work, the structural, electronic, thermodynamic and CO2 capture properties of monoclinic phases of Li4SiO4 and a binary (Li3NaSiO4) eutectic mixture are investigated using density functional theory. The properties of the bulk crystal phases as well as of the relevant surfaces are analysed. Likewise, the results for CO2-lithium silicates indicate that CO2 is strongly adsorbed on the oxygen sites of both sorbents through chemisorption, causing an alteration not only in the chemical structure and atomic charges of the gas, as reflected by both the angles and bond distances as well as atomic charges, but also in the cell parameters of the Li4SiO4 and Li3NaSiO4 systems, especially in Li4SiO4(001) and Li3NaSiO4(010) surfaces. The results confirm strong adsorption of CO2 molecules on all the considered surfaces and materials followed by CO2 activation as inferred from CO2 bending, bond elongation and surface to CO2 charge transfer, indicating CO2 chemisorption for all cases. The Li4SiO4 and Li3NaSiO4 surfaces may be proposed as suitable sorbents for CO2 capture in wide temperature ranges.

15.
Sci Rep ; 12(1): 1523, 2022 01 27.
Article in English | MEDLINE | ID: mdl-35087098

ABSTRACT

The development of new candidate alloys with outstanding characteristics for their use in the aeronautical field is one of the main priorities for the sector. In this context, nanocrystaline (nc) alloys are considered relevant materials due to their special features, such as their exceptional physical and mechanical properties. However, another important point that needs to be considered with newly developed alloys is the potential toxicological impact that these materials may have in humans and other living organisms. The aim of this work was to perform a preliminary toxicological evaluation of three nc metal alloys (WCu, WAl and TiAl) in powder form produced by mechanical alloying, applying different in vitro assays, including a mix of W-Cu powders with standard grain size in the experiments to stablish comparisons. The effects of the direct exposure to powder suspensions and/or to their derived leachates were analysed in three model organisms representative of human and environmental exposures (the adenocarcinomic human alveolar basal epithelial cell line A549, the yeast Saccharomyces cerevisiae and the Gram negative bacterium Vibrio fischeri). Altogether, the results obtained provide new insights about the potential harmful effects of the selected nc alloys, showing that, from a toxicological perspective, nc TiAl is the safest candidate in the model organisms and conditions tested.

16.
Chemosphere ; 286(Pt 2): 131782, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34375825

ABSTRACT

The current study was dedicated to finding the effect of soil amendments (biochar and compost) on plants belonging to Poaceae and Fabaceae families. Plants selected for the phytoremediation experiment included wheat (Triticum aestivum), maize (Zea mays), white clover (Trifolium repens), alfalfa (Medicago sativa), and ryegrass (Lolium multiflorum). The physiological and microbial parameters of plants and soil were affected negatively by the 4 % TPHs soil contamination. The studied physiological parameters were fresh and dried biomass, root and shoot length, and chlorophyll content. Microbial parameters included root and shoot endophytic count. Soil parameters included rhizospheric CFUs and residual TPHs. Biochar with wheat, maize, and ryegrass (Fabaceae family) and compost with white clover and alfalfa (Poaceae family) improved plant growth parameters and showed better phytoremediation of TPHs. Among different plants, the highest TPH removal (68.5 %) was demonstrated by ryegrass with compost, followed by white clover with biochar (68 %). Without any soil amendment, ryegrass and alfalfa showed 59.55 and 35.21 % degradation of TPHs, respectively. Biochar and compost alone removed 27.24 % and 6.01 % TPHs, respectively. The interactive effect of soil amendment and plant type was also noted for studied parameters and TPHs degradation.


Subject(s)
Composting , Lolium , Petroleum , Soil Pollutants , Biodegradation, Environmental , Charcoal , Humans , Hydrocarbons , Medicago sativa , Poaceae , Soil , Soil Pollutants/analysis
17.
Nanomaterials (Basel) ; 11(9)2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34578588

ABSTRACT

Carbon nanotubes (CNTs) have attracted the attention of academy and industry due to their potential applications, being currently produced and commercialized at a mass scale, but their possible impact on different biological systems remains unclear. In the present work, an assessment to understand the toxicity of commercial pristine multi-walled carbon nanotubes (MWCNTs) on the unicellular fungal model Saccharomyces cerevisiae is presented. Firstly, the nanomaterial was physico-chemically characterized, to obtain insights concerning its morphological features and elemental composition. Afterwards, a toxicology assessment was carried out, where it could be observed that cell proliferation was negatively affected only in the presence of 800 mg L-1 for 24 h, while oxidative stress was induced at a lower concentration (160 mg L-1) after a short exposure period (2 h). Finally, to identify possible toxicity pathways induced by the selected MWCNTs, the transcriptome of S. cerevisiae exposed to 160 and 800 mg L-1, for two hours, was studied. In contrast to a previous study, reporting massive transcriptional changes when yeast cells were exposed to graphene nanoplatelets in the same exposure conditions, only a small number of genes (130) showed significant transcriptional changes in the presence of MWCNTs, in the higher concentration tested (800 mg L-1), and most of them were found to be downregulated, indicating a limited biological response of the yeast cells exposed to the selected pristine commercial CNTs.

18.
Environ Res ; 195: 110780, 2021 04.
Article in English | MEDLINE | ID: mdl-33539835

ABSTRACT

Environmental matrices are polluted with the plethora of contaminants, and among these, the concerns related to heavy metals (HMs) are also included. Due to the low cost in a long-term application and environmental friendliness, the use of biological remediation has gained significant attention in recent decades. The use of ornamental plants (OPs) in the field of phytoremediation is scarcely reported, and the impacts of HMs on OPs have also not been investigated in great depth. The OPs mediated HMs remediation can simultaneously remove contaminants and bring improvement in aesthetics of the site. The biomass of OPs produced after such activities can be used and sold as pot plants, cut flowers, essential oils, perfumes, air fresheners production, metal phytomining, and feedstock in silk production. The OPs also present a lower risk of HMs bioaccumulation compared to crop plants. This review focuses on the current knowledge of HMs toxicity to OPs, their applicability advantages, methods to improve the tolerance of OPs with incremented HMs uptake, challenges in the field, and future application perspectives. The case studies realted to practical application of OPs, from China, Iran, India, Oman, Pakistan, and Turkey, were also discussed. This work fetches the inter-disciplinary features and understanding for the sustainable treatment of HMs in a new novel way, to which no previous review has focused.


Subject(s)
Metals, Heavy , Soil Pollutants , Biodegradation, Environmental , China , India , Iran , Metals, Heavy/analysis , Metals, Heavy/toxicity , Pakistan , Soil , Soil Pollutants/analysis , Soil Pollutants/toxicity , Turkey
19.
Int J Mol Sci ; 22(2)2021 Jan 08.
Article in English | MEDLINE | ID: mdl-33430016

ABSTRACT

Boron nitride (BN) nanomaterials have been increasingly explored for potential applications in chemistry and biology fields (e.g., biomedical, pharmaceutical, and energy industries) due to their unique physico-chemical properties. However, their safe utilization requires a profound knowledge on their potential toxicological and environmental impact. To date, BN nanoparticles have been considered to have a high biocompatibility degree, but in some cases, contradictory results on their potential toxicity have been reported. Therefore, in the present study, we assessed two commercial 2D BN samples, namely BN-nanopowder (BN-PW) and BN-nanoplatelet (BN-PL), with the objective to identify whether distinct physico-chemical features may have an influence on the biological responses of exposed cellular models. Morphological, structural, and composition analyses showed that the most remarkable difference between both commercial samples was the diameter of their disk-like shape, which was of 200-300 nm for BN-PL and 100-150 nm for BN-PW. Their potential toxicity was investigated using adenocarcinomic human alveolar basal epithelial cells (A549 cells) and the unicellular fungus Saccharomycescerevisiae, as human and environmental eukaryotic models respectively, employing in vitro assays. In both cases, cellular viability assays and reactive oxygen species (ROS) determinations where performed. The impact of the selected nanomaterials in the viability of both unicellular models was very low, with only a slight reduction of S. cerevisiae colony forming units being observed after a long exposure period (24 h) to high concentrations (800 mg/L) of both nanomaterials. Similarly, BN-PW and BN-PL showed a low capacity to induce the formation of reactive oxygen species in the studied conditions. Even at the highest concentration and exposure times, no major cytotoxicity indicators were observed in human cells and yeast. The results obtained in the present study provide novel insights into the safety of 2D BN nanomaterials, indicating no significant differences in the toxicological potential of similar commercial products with a distinct lateral size, which showed to be safe products in the concentrations and exposure conditions tested.


Subject(s)
Blood Platelets/chemistry , Boron Compounds/chemistry , Nanostructures/chemistry , Oxidative Stress/drug effects , Boron Compounds/adverse effects , Humans , Reactive Oxygen Species/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...