Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceuticals (Basel) ; 17(7)2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39065796

ABSTRACT

In recent years, the search for novel natural-based ingredients by food and related industries has sparked extensive research aimed at discovering new sources of functional molecules. Camellia japonica, traditionally known as an ornamental plant, has gained attention due to its diverse array of bioactive compounds with potential industrial applications. Although C. japonica flowers are edible, their phytochemical profile has not been thoroughly investigated. In this study, a phenolic profile screening through an HPLC-ESI-QQQ-MS/MS approach was applied to C. japonica flower extracts, revealing a total of 36 compounds, including anthocyanins, curcuminoids, dihydrochalcones, dihydroflavonols, flavonols, flavones, hydroxybenzoic acids, hydroxycinnamic acids, isoflavonoids, stilbenes, and tyrosols. Following extract profiling, their bioactivity was assessed by means of in vitro antioxidant, antimicrobial, cytotoxic, and neuroprotective activities. The results showed a multifaceted high correlation of phenolic compounds with all the tested bioactivities according to Pearson's correlation analysis, unraveling the potential of C. japonica flowers as promising sources of nutraceuticals. Overall, these findings provide insight into the valorization of C. japonica flowers from different unexplored cultivars thus diversifying their industrial outcome.

2.
Food Chem ; 438: 138037, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38011789

ABSTRACT

Phytochemical-rich antioxidant extracts were obtained from Ascophyllum nodosum (AN) using microwave-assisted extraction (MAE). Critical extraction factors such as time, pressure, and ethanol concentration were optimized by response surface methodology with a circumscribed central composite design. Under the optimal MAE conditions (3 min, 10.4 bar, 46.8 % ethanol), the maximum recovery of phytochemical compounds (polyphenols and fucoxanthin) with improved antioxidant activity from AN was obtained. In addition, the optimized AN extract showed significant biological activities as it was able to scavenge reactive oxygen and nitrogen species, inhibit central nervous system-related enzymes, and exhibit cytotoxic activity against different cancer cell lines. In addition, the optimized AN extract showed antimicrobial, and anti-quorum sensing activities, indicating that this extract could offer direct and indirect protection against infection by pathogenic microorganisms. This work demonstrated that the sustainably obtained AN extract could be an emerging, non-toxic, and natural ingredient with potential to be included in different applications.


Subject(s)
Ascophyllum , Microwaves , Antioxidants/pharmacology , Antioxidants/chemistry , Phytochemicals/pharmacology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Ethanol/chemistry
3.
Pharmaceuticals (Basel) ; 16(12)2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38139848

ABSTRACT

This review summarizes the recent findings on the development of different types of single and multitarget nanoparticles for disease detection and drug delivery to the brain, focusing on promising active principles encapsulated and nanoparticle surface modification and functionalization. Functionalized nanoparticles have emerged as promising tools for the diagnosis and treatment of brain disorders, offering a novel approach to addressing complex neurological challenges. They can act as drug delivery vehicles, transporting one or multiple therapeutic agents across the blood-brain barrier and precisely releasing them at the site of action. In diagnostics, functionalized nanoparticles can serve as highly sensitive contrast agents for imaging techniques such as magnetic resonance imaging and computed tomography scans. By attaching targeting ligands to the nanoparticles, they can selectively accumulate in the affected areas of the brain, enhancing the accuracy of disease detection. This enables early diagnosis and monitoring of conditions like Alzheimer's or Parkinson's diseases. While the field is still evolving, functionalized nanoparticles represent a promising path for advancing our ability to diagnose and treat brain disorders with greater precision, reduced invasiveness, and improved therapeutic outcomes.

4.
Biosensors (Basel) ; 13(9)2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37754074

ABSTRACT

As one of the most popular beverages in the world, coffee is a rich source of non-enzymatic bioactive compounds with antioxidant capacity. In this study, twelve commercial coffee beverages found in local Portuguese markets were assessed to determine their total phenolic and flavonoid contents, as well as their antioxidant capacity, by conventional optical procedures, namely, ferric reducing antioxidant power and DPPH-radical scavenging assay, and non-conventional procedures such as a homemade DNA-based biosensor against two reactive radicals: HO• and H2O2. The innovative DNA-based biosensor comprised an adenine-rich oligonucleotide adsorbed onto a carbon paste electrode. This method detects the different peak intensities generated by square-wave voltammetry based on the partial damage to the adenine layer adsorbed on the electrode surface by the free radicals in the presence/absence of antioxidants. The DNA-based biosensor against H2O2 presented a higher DNA layer protection compared with HO• in the presence of the reference gallic acid. Additionally, the phenolic profiles of the twelve coffee samples were assessed by HPLC-DAD, and the main contributors to the exhibited antioxidant capacity properties were caffeine, and chlorogenic, protocatechuic, neochlorogenic and gallic acids. The DNA-based sensor used provides reliable and fast measurements of antioxidant capacity, and is also cheap and easy to construct.


Subject(s)
Antioxidants , Coffee , Hydrogen Peroxide , DNA , Gallic Acid , Adenine
5.
Mar Drugs ; 21(7)2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37504945

ABSTRACT

Fucoxanthin (Fx) has been proven to exert numerous biological properties, which makes it an interesting molecule with diverse industrial applications. In this study, the kinetic behavior of Fx was studied to optimize three variables: time (t-3 min to 7 days), temperature (T-5 to 85 °C), and concentration of ethanol in water (S-50 to 100%, v/v), in order to obtain the best Fx yield from Undaria pinnatifida using conventional heat extraction. The Fx content (Y1) was found through HPLC-DAD and expressed in µg Fx/g of algae sample dry weight (AS dw). Furthermore, extraction yield (Y2) was also found through dry weight analysis and was expressed in mg extract (E)/g AS dw. The purity of the extracts (Y3) was found and expressed in mg Fx/g E dw. The optimal conditions selected for Y1 were T = 45 °C, S = 70%, and t = 66 min, obtaining ~5.24 mg Fx/g AS; for Y2 were T = 65 °C, S = 60%, and t = ~10 min, obtaining ~450 mg E/g AS; and for Y3 were T = 45 °C, S = 70%, and t = 45 min, obtaining ~12.3 mg Fx/g E. In addition, for the selected optimums, a full screening of pigments was performed by HPLC-DAD, while phenolics and flavonoids were quantified by spectrophotometric techniques and several biological properties were evaluated (namely, antioxidant, antimicrobial, and cholinesterase inhibitory activity). These results could be of interest for future applications in the food, cosmetic, or pharmaceutical industries, as they show the Fx kinetic behavior and could help reduce costs associated with energy and solvent consumption while maximizing the extraction yields.


Subject(s)
Undaria , Solvents , Ethanol , Xanthophylls/analysis
6.
Int J Mol Sci ; 24(10)2023 May 09.
Article in English | MEDLINE | ID: mdl-37239826

ABSTRACT

Major depressive disorder is a widespread condition with antidepressants as the main pharmacological treatment. However, some patients experience concerning adverse reactions or have an inadequate response to treatment. Analytical chromatographic techniques, among other techniques, are valuable tools for investigating medication complications, including those associated with antidepressants. Nevertheless, there is a growing need to address the limitations associated with these techniques. In recent years, electrochemical (bio)sensors have garnered significant attention due to their lower cost, portability, and precision. Electrochemical (bio)sensors can be used for various applications related to depression, such as monitoring the levels of antidepressants in biological and in environmental samples. They can provide accurate and rapid results, which could facilitate personalized treatment and improve patient outcomes. This state-of-the-art literature review aims to explore the latest advancements in the electrochemical detection of antidepressants. The review focuses on two types of electrochemical sensors: Chemically modified sensors and enzyme-based biosensors. The referred papers are carefully categorized according to their respective sensor type. The review examines the differences between the two sensing methods, highlights their unique features and limitations, and provides an in-depth analysis of each sensor.


Subject(s)
Biosensing Techniques , Depressive Disorder, Major , Humans , Depressive Disorder, Major/drug therapy , Electrochemical Techniques/methods , Biosensing Techniques/methods , Antidepressive Agents/therapeutic use
7.
Bioelectrochemistry ; 95: 7-14, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24161938

ABSTRACT

This work describes the development of an electrochemical enzymatic biosensor for quantification of the pesticide formetanate hydrochloride (FMT). It is based on a gold electrode modified with electrodeposited gold nanoparticles and laccase. The principle behind its development relies on FMT's capacity to inhibit the laccase catalytic reaction that occurs in the presence of phenolic substrates. The optimum values for the relevant experimental variables such as gold nanoparticles electrochemical deposition (at -0.2V for 100s), laccase immobilization (via glutaraldehyde cross-linking), laccase concentration (12.4mg/mL), substrate selection and concentration (5.83×10(-5)M of aminophenol), pH (5.0), buffer (Britton-Robinson), and square-wave voltammetric parameters were determined. The developed biosensor was successfully applied to FMT determination in mango and grapes. The attained limit of detection was 9.5×10(-8)±9.5×10(-10)M (0.02±2.6×10(-4)mg/kg on a fresh fruit weight basis). Recoveries for the five tested spiking levels ranged from 95.5±2.9 (grapes) to 108.6±2.5% (mango). The results indicated that the proposed device presents suitable characteristics in terms of sensitivity (20.58±0.49A/µM), linearity (9.43×10(-7) to 1.13×10(-5)M), accuracy, repeatability (RSD of 1.4%), reproducibility (RSD of 1.8%) and stability (19days) for testing of compliance with established maximum residue limits of FMT in fruits and vegetables.


Subject(s)
Biosensing Techniques/methods , Carbamates/analysis , Fruit/chemistry , Laccase/chemistry , Laccase/metabolism , Pesticide Residues/analysis , Carbamates/chemistry , Electrochemistry , Electrodes , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Food Contamination , Gold/chemistry , Metal Nanoparticles/chemistry , Pesticide Residues/chemistry , Time Factors , Trametes/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL