Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Ann Hum Genet ; 88(1): 76-85, 2024 01.
Article in English | MEDLINE | ID: mdl-37042117

ABSTRACT

INTRODUCTION: Massively parallel sequencing (MPS) techniques have made a major impact on the identification of the genetic basis of inherited kidney diseases such as the ciliopathy autosomal dominant polycystic kidney disease (ADPKD). Great care must be taken when analysing MPS data in isolation from accurate phenotypic information, as this can cause misdiagnosis. METHODS: Here, we describe a family trio, recruited to the Genomics England 100,000 Genomes Project, labelled as having cystic kidney disease, who were genetically unsolved following routine data analysis pipelines. We performed a bespoke reanalysis of Whole Genome Sequencing (WGS) data and coupled this with revised phenotypic data and targeted PCR and Sanger sequencing to provide a precise molecular genetic diagnosis. RESULTS: We detected a heterozygous PKD1 frameshift variant within the WGS data which segregated with the redefined ADPKD phenotypes. An additional heterozygous exon deletion in ALG8 was also found in affected and unaffected individuals, but its precise clinical significance remains unclear. CONCLUSION: This case illustrates that reanalysis of WGS data in unsolved cases of cystic kidney disease is valuable. Clinical phenotypes must be reassessed as these may have been incorrectly recorded and evolve over time. Undertaking additional studies including genotype-phenotype correlation in wider family members provides useful diagnostic information.


Subject(s)
Polycystic Kidney, Autosomal Dominant , Humans , Polycystic Kidney, Autosomal Dominant/diagnosis , Polycystic Kidney, Autosomal Dominant/genetics , TRPP Cation Channels/genetics , Phenotype , Kidney , Genomics , Molecular Biology , Mutation
2.
J Rare Dis (Berlin) ; 2(1): 9, 2023.
Article in English | MEDLINE | ID: mdl-37288276

ABSTRACT

Objectives/aims: The visceral myopathies (VM) are a group of disorders characterised by poorly contractile or acontractile smooth muscle. They manifest in both the GI and GU tracts, ranging from megacystis to Prune Belly syndrome. We aimed to apply a bespoke virtual genetic panel and describe novel variants associated with this condition using whole genome sequencing data within the Genomics England 100,000 Genomes Project. Methods: We screened the Genomics England 100,000 Genomes Project rare diseases database for patients with VM-related phenotypes. These patients were screened for sequence variants and copy number variants (CNV) in ACTG2, ACTA2, MYH11, MYLK, LMOD1, CHRM3, MYL9, FLNA and KNCMA1 by analysing whole genome sequencing data. The identified variants were analysed using variant effect predictor online tool, and any possible segregation in other family members and novel missense mutations was modelled using in silico tools. The VM cohort was also used to perform a genome-wide variant burden test in order to identify confirm gene associations in this cohort. Results: We identified 76 patients with phenotypes consistent with a diagnosis of VM. The range of presentations included megacystis/microcolon hypoperistalsis syndrome, Prune Belly syndrome and chronic intestinal pseudo-obstruction. Of the patients in whom we identified heterozygous ACTG2 variants, 7 had likely pathogenic variants including 1 novel likely pathogenic allele. There were 4 patients in whom we identified a heterozygous MYH11 variant of uncertain significance which leads to a frameshift and a predicted protein elongation. We identified one family in whom we found a heterozygous variant of uncertain significance in KCNMA1 which in silico models predicted to be disease causing and may explain the VM phenotype seen. We did not find any CNV changes in known genes leading to VM-related disease phenotypes. In this phenotype selected cohort, ACTG2 is the largest monogenic cause of VM-related disease accounting for 9% of the cohort, supported by a variant burden test approach, which identified ACTG2 variants as the largest contributor to VM-related phenotypes. Conclusions: VM are a group of disorders that are not easily classified and may be given different diagnostic labels depending on their phenotype. Molecular genetic analysis of these patients is valuable as it allows precise diagnosis and aids understanding of the underlying disease manifestations. We identified ACTG2 as the most frequent genetic cause of VM. We recommend a nomenclature change to 'autosomal dominant ACTG2 visceral myopathy' for patients with pathogenic variants in ACTG2 and associated VM phenotypes. Supplementary Information: The online version contains supplementary material available at 10.1007/s44162-023-00012-z.

3.
Clin Genet ; 103(3): 330-334, 2023 03.
Article in English | MEDLINE | ID: mdl-36273371

ABSTRACT

Ciliopathies may be classed as primary or motile depending on the underlying ciliary defect and are usually considered distinct clinical entities. Primary ciliopathies are associated with multisystem syndromes typically affecting the brain, kidney, and eye, as well as other organ systems such as the liver, skeleton, auditory system, and metabolism. Motile ciliopathies are a heterogenous group of disorders with defects in specialised motile ciliated tissues found within the lung, brain, and reproductive system, and are associated with primary ciliary dyskinesia, bronchiectasis, infertility and rarely hydrocephalus. Primary and motile cilia share defined core ultra-structures with an overlapping proteome, and human disease phenotypes can reflect both primary and motile ciliopathies. CEP164 encodes a centrosomal distal appendage protein vital for primary ciliogenesis. Human CEP164 mutations are typically described in patients with nephronophthisis-related primary ciliopathies but have also been implicated in motile ciliary dysfunction. Here we describe a patient with an atypical motile ciliopathy phenotype and biallelic CEP164 variants. This work provides further evidence that CEP164 mutations can contribute to both primary and motile ciliopathy syndromes, supporting their functional and clinical overlap, and informs the investigation and management of CEP164 ciliopathy patients.


Subject(s)
Ciliopathies , Humans , Syndrome , Ciliopathies/genetics , Proteins/genetics , Kidney , Mutation , Cilia/genetics
4.
Am J Hum Genet ; 109(8): 1484-1499, 2022 08 04.
Article in English | MEDLINE | ID: mdl-35896117

ABSTRACT

Disorders of the autosomal dominant polycystic kidney disease (ADPKD) spectrum are characterized by the development of kidney cysts and progressive kidney function decline. PKD1 and PKD2, encoding polycystin (PC)1 and 2, are the two major genes associated with ADPKD; other genes include IFT140, GANAB, DNAJB11, and ALG9. Genetic testing remains inconclusive in ∼7% of the families. We performed whole-exome sequencing in a large multiplex genetically unresolved (GUR) family affected by ADPKD-like symptoms and identified a monoallelic frameshift variant (c.703_704delCA) in ALG5. ALG5 encodes an endoplasmic-reticulum-resident enzyme required for addition of glucose molecules to the assembling N-glycan precursors. To identify additional families, we screened a cohort of 1,213 families with ADPKD-like and/or autosomal-dominant tubulointerstitial kidney diseases (ADTKD), GUR (n = 137) or naive to genetic testing (n = 1,076), by targeted massively parallel sequencing, and we accessed Genomics England 100,000 Genomes Project data. Four additional families with pathogenic variants in ALG5 were identified. Clinical presentation was consistent in the 23 affected members, with non-enlarged cystic kidneys and few or no liver cysts; 8 subjects reached end-stage kidney disease from 62 to 91 years of age. We demonstrate that ALG5 haploinsufficiency is sufficient to alter the synthesis of the N-glycan chain in renal epithelial cells. We also show that ALG5 is required for PC1 maturation and membrane and ciliary localization and that heterozygous loss of ALG5 affects PC1 maturation. Overall, our results indicate that monoallelic variants of ALG5 lead to a disorder of the ADPKD-spectrum characterized by multiple small kidney cysts, progressive interstitial fibrosis, and kidney function decline.


Subject(s)
Cysts , Polycystic Kidney, Autosomal Dominant , Cysts/genetics , Fibrosis , Humans , Kidney/pathology , Mutation/genetics , Polycystic Kidney, Autosomal Dominant/genetics , Polycystic Kidney, Autosomal Dominant/pathology , Exome Sequencing
5.
Sci Rep ; 11(1): 23292, 2021 12 02.
Article in English | MEDLINE | ID: mdl-34857786

ABSTRACT

Primary Sjögren's syndrome (SS) is a systemic autoimmune disease characterized by lymphocytic infiltration and damage of exocrine salivary and lacrimal glands. The etiology of SS is complex with environmental triggers and genetic factors involved. By conducting an integrated multi-omics study, we confirmed a vast coordinated hypomethylation and overexpression effects in IFN-related genes, what is known as the IFN signature. Stratified and conditional analyses suggest a strong interaction between SS-associated HLA genetic variation and the presence of Anti-Ro/SSA autoantibodies in driving the IFN epigenetic signature and determining SS. We report a novel epigenetic signature characterized by increased DNA methylation levels in a large number of genes enriched in pathways such as collagen metabolism and extracellular matrix organization. We identified potential new genetic variants associated with SS that might mediate their risk by altering DNA methylation or gene expression patterns, as well as disease-interacting genetic variants that exhibit regulatory function only in the SS population. Our study sheds new light on the interaction between genetics, autoantibody profiles, DNA methylation and gene expression in SS, and contributes to elucidate the genetic architecture of gene regulation in an autoimmune population.


Subject(s)
Autoantibodies , Epigenomics , Gene Expression Regulation/genetics , Gene Expression/genetics , Genetic Variation , HLA Antigens/genetics , Interferons/genetics , Sjogren's Syndrome/genetics , Sjogren's Syndrome/immunology , DNA Methylation/genetics , Female , Humans , Male , Sjogren's Syndrome/etiology
6.
F1000Res ; 10: 207, 2021.
Article in English | MEDLINE | ID: mdl-34354814

ABSTRACT

Background: Whole exome sequencing (WES) is becoming part of routine clinical and diagnostic practice. In the investigation of inherited cystic kidney disease and renal ciliopathy syndromes, WES has been extensively applied in research studies as well as for diagnostic utility to detect various novel genes and variants. The yield of WES critically depends on the characteristics of the patient population. Methods: In this study, we selected 8 unrelated Omani children, presenting with renal ciliopathy syndromes with a positive family history and originating from consanguineous families. We performed WES in affected children to determine the genetic cause of disease and to test the yield of this approach, coupled with homozygosity mapping, in this highly selected population. DNA library construction and WES was carried out using SureSelect Human All Exon V6 Enrichment Kit and Illumina HiSeq platform. For variants filtering and annotation Qiagen Variant Ingenuity tool was used. Nexus copy number software from BioDiscovery was used for evaluation of copy number variants and whole gene deletions. Patient and parental DNA was used to confirm mutations and the segregation of alleles using Sanger sequencing. Results: Genetic analysis identified 4 potential causative homozygous variants each confirmed by Sanger sequencing in 4 clinically relevant ciliopathy syndrome genes, ( TMEM231, TMEM138, WDR19 and BBS9), leading to an overall diagnostic yield of 50%. Conclusions: WES coupled with homozygosity mapping provided a diagnostic yield of 50% in this selected population. This genetic approach needs to be embedded into clinical practise to allow confirmation of clinical diagnosis, to inform genetic screening as well as family planning decisions. Half of the patients remain without diagnosis highlighting the technical and interpretational hurdles that need to be overcome in the future.


Subject(s)
Ciliopathies , Exome , Child , Ciliopathies/diagnosis , Ciliopathies/genetics , Consanguinity , Exome/genetics , Humans , Syndrome , Exome Sequencing
7.
Brain Commun ; 3(3): fcab163, 2021.
Article in English | MEDLINE | ID: mdl-34423300

ABSTRACT

Paediatric neurology syndromes are a broad and complex group of conditions with a large spectrum of clinical phenotypes. Joubert syndrome is a genetically heterogeneous neurological ciliopathy syndrome with molar tooth sign as the neuroimaging hallmark. We reviewed the clinical, radiological and genetic data for several families with a clinical diagnosis of Joubert syndrome but negative genetic analysis. We detected biallelic pathogenic variants in LAMA1, including novel alleles, in each of the four cases we report, thereby establishing a firm diagnosis of Poretti-Boltshauser syndrome. Analysis of brain MRI revealed cerebellar dysplasia and cerebellar cysts, associated with Poretti-Boltshauser syndrome and the absence of typical molar tooth signs. Using large UK patient cohorts, the relative prevalence of Joubert syndrome as a cause of intellectual disability was 0.2% and of Poretti-Boltshauser syndrome was 0.02%. We conclude that children with congenital brain disorders that mimic Joubert syndrome may have a delayed diagnosis due to poor recognition of key features on brain imaging and the lack of inclusion of LAMA1 on molecular genetic gene panels. We advocate the inclusion of LAMA1 genetic analysis on all intellectual disability and Joubert syndrome gene panels and promote a wider awareness of the clinical and radiological features of these syndromes.

8.
Hum Mutat ; 42(10): 1221-1228, 2021 10.
Article in English | MEDLINE | ID: mdl-34212438

ABSTRACT

Half of patients with a ciliopathy syndrome remain unsolved after initial analysis of whole exome sequencing (WES) data, highlighting the need for improved variant filtering and annotation. By candidate gene curation of WES data, combined with homozygosity mapping, we detected a homozygous predicted synonymous allele in NPHP3 in two children with hepatorenal fibrocystic disease from a consanguineous family. Analyses on patient-derived RNA shows activation of a cryptic mid-exon splice donor leading to frameshift. Remarkably, the same rare variant was detected in four additional families with hepatorenal disease from UK, US, and Saudi patient cohorts and in addition, another synonymous NPHP3 variant was identified in an unsolved case from the Genomics England 100,000 Genomes data set. We conclude that synonymous NPHP3 variants, not reported before and discarded by pathogenicity pipelines, solved several families with a ciliopathy syndrome. These findings prompt careful reassessment of synonymous variants, especially if they are rare and located in candidate genes.


Subject(s)
Liver Cirrhosis , Polycystic Kidney Diseases , Child , Genetic Diseases, Inborn , Homozygote , Humans , Kinesins , Exome Sequencing
9.
Biochem Soc Trans ; 49(3): 1205-1220, 2021 06 30.
Article in English | MEDLINE | ID: mdl-33960378

ABSTRACT

Renal ciliopathies are a heterogenous group of inherited disorders leading to an array of phenotypes that include cystic kidney disease and renal interstitial fibrosis leading to progressive chronic kidney disease and end-stage kidney disease. The renal tubules are lined with epithelial cells that possess primary cilia that project into the lumen and act as sensory and signalling organelles. Mutations in genes encoding ciliary proteins involved in the structure and function of primary cilia cause ciliopathy syndromes and affect many organ systems including the kidney. Recognised disease phenotypes associated with primary ciliopathies that have a strong renal component include autosomal dominant and recessive polycystic kidney disease and their various mimics, including atypical polycystic kidney disease and nephronophthisis. The molecular investigation of inherited renal ciliopathies often allows a precise diagnosis to be reached where renal histology and other investigations have been unhelpful and can help in determining kidney prognosis. With increasing molecular insights, it is now apparent that renal ciliopathies form a continuum of clinical phenotypes with disease entities that have been classically described as dominant or recessive at both extremes of the spectrum. Gene-dosage effects, hypomorphic alleles, modifier genes and digenic inheritance further contribute to the genetic complexity of these disorders. This review will focus on recent molecular genetic advances in the renal ciliopathy field with a focus on cystic kidney disease phenotypes and the genotypes that lead to them. We discuss recent novel insights into underlying disease mechanisms of renal ciliopathies that might be amenable to therapeutic intervention.


Subject(s)
Cilia/genetics , Ciliopathies/genetics , Genetic Predisposition to Disease/genetics , Kidney/metabolism , Mutation , Polycystic Kidney Diseases/genetics , Animals , Cilia/metabolism , Cilia/pathology , Ciliopathies/diagnosis , Ciliopathies/metabolism , Genotype , Humans , Kidney/pathology , Phenotype , Polycystic Kidney Diseases/diagnosis , Polycystic Kidney Diseases/metabolism
10.
Mol Genet Genomic Med ; 9(12): e1603, 2021 12.
Article in English | MEDLINE | ID: mdl-33486889

ABSTRACT

BACKGROUND: Mutations in ciliary genes cause a spectrum of both overlapping and distinct clinical syndromes (ciliopathies). CEP120 and CC2D2A are paradigmatic examples for this genetic heterogeneity and pleiotropy as mutations in both cause Joubert syndrome but are also associated with skeletal ciliopathies and Meckel syndrome, respectively. The molecular basis for this phenotypical variability is not understood but basal exon skipping likely contributes to tolerance for deleterious mutations via tissue-specific preservation of the amount of expressed functional protein. METHODS: We systematically reviewed and annotated genetic variants and clinical presentations reported in CEP120- and CC2D2A-associated disease and we combined in silico and ex vivo approaches to study tissue-specific transcripts and identify molecular targets for exon skipping. RESULTS: We confirmed more severe clinical presentations associated with truncating CC2D2A mutations. We identified and confirmed basal exon skipping in the kidney, with possible relevance for organ-specific disease manifestations. Finally, we proposed a multimodal approach to classify exons amenable to exon skipping. By mapping reported variants, 14 truncating mutations in 7 CC2D2A exons were identified as potentially rescuable by targeted exon skipping, an approach that is already in clinical use for other inherited human diseases. CONCLUSION: Genotype-phenotype correlations for CC2D2A support the deleteriousness of null alleles and CC2D2A, but not CEP120, offers potential for therapeutic exon skipping approaches.


Subject(s)
Cell Cycle Proteins/genetics , Ciliopathies/genetics , Cytoskeletal Proteins/genetics , Gene Expression , Genetic Association Studies , Genetic Predisposition to Disease , Mutation , Alleles , Ciliopathies/diagnosis , Ciliopathies/therapy , Exons , Gene Expression Profiling , Genetic Loci , Genetic Therapy/methods , Humans , Oligonucleotides, Antisense/genetics , Oligonucleotides, Antisense/therapeutic use , Organ Specificity , Phenotype , Precision Medicine
12.
Kidney Int ; 98(2): 476-487, 2020 08.
Article in English | MEDLINE | ID: mdl-32631624

ABSTRACT

Monoallelic mutations of DNAJB11 were recently described in seven pedigrees with atypical clinical presentations of autosomal dominant polycystic kidney disease. DNAJB11 encodes one of the main cofactors of the endoplasmic reticulum chaperon BiP, a heat-shock protein required for efficient protein folding and trafficking. Here we conducted an international collaborative study to better characterize the DNAJB11-associated phenotype. Thirteen different loss-of-function variants were identified in 20 new pedigrees (54 affected individuals) by targeted next-generation sequencing, whole-exome sequencing or whole-genome sequencing. Amongst the 77 patients (27 pedigrees) now in total reported, 32 reached end stage kidney disease (range, 55-89 years, median age 75); without a significant difference between males and females. While a majority of patients presented with non-enlarged polycystic kidneys, renal cysts were inconsistently identified in patients under age 45. Vascular phenotypes, including intracranial aneurysms, dilatation of the thoracic aorta and dissection of a carotid artery were present in four pedigrees. We accessed Genomics England 100,000 genomes project data, and identified pathogenic variants of DNAJB11 in nine of 3934 probands with various kidney and urinary tract disorders. The clinical diagnosis was cystic kidney disease for eight probands and nephrocalcinosis for one proband. No additional pathogenic variants likely explaining the kidney disease were identified. Using the publicly available GnomAD database, DNAJB11 genetic prevalence was calculated at 0.85/10.000 individuals. Thus, establishing a precise diagnosis in atypical cystic or interstitial kidney disease is crucial, with important implications in terms of follow-up, genetic counseling, prognostic evaluation, therapeutic management, and for selection of living kidney donors.


Subject(s)
Polycystic Kidney, Autosomal Dominant , TRPP Cation Channels , Aged , England , Female , HSP40 Heat-Shock Proteins , Humans , Male , Middle Aged , Mutation , Polycystic Kidney, Autosomal Dominant/diagnosis , Polycystic Kidney, Autosomal Dominant/epidemiology , Polycystic Kidney, Autosomal Dominant/genetics , Prevalence , Prognosis , TRPP Cation Channels/genetics
13.
J Clin Invest ; 130(8): 4423-4439, 2020 08 03.
Article in English | MEDLINE | ID: mdl-32453716

ABSTRACT

Joubert syndrome (JBTS) is a recessive neurodevelopmental ciliopathy characterized by a pathognomonic hindbrain malformation. All known JBTS genes encode proteins involved in the structure or function of primary cilia, ubiquitous antenna-like organelles essential for cellular signal transduction. Here, we used the recently identified JBTS-associated protein armadillo repeat motif-containing 9 (ARMC9) in tandem-affinity purification and yeast 2-hybrid screens to identify a ciliary module whose dysfunction underlies JBTS. In addition to the known JBTS-associated proteins CEP104 and CSPP1, we identified coiled-coil domain containing 66 (CCDC66) and TOG array regulator of axonemal microtubules 1 (TOGARAM1) as ARMC9 interaction partners. We found that TOGARAM1 variants cause JBTS and disrupt TOGARAM1 interaction with ARMC9. Using a combination of protein interaction analyses, characterization of patient-derived fibroblasts, and analysis of CRISPR/Cas9-engineered zebrafish and hTERT-RPE1 cells, we demonstrated that dysfunction of ARMC9 or TOGARAM1 resulted in short cilia with decreased axonemal acetylation and polyglutamylation, but relatively intact transition zone function. Aberrant serum-induced ciliary resorption and cold-induced depolymerization in ARMC9 and TOGARAM1 patient cell lines suggest a role for this new JBTS-associated protein module in ciliary stability.


Subject(s)
Abnormalities, Multiple , Armadillo Domain Proteins , Cerebellum/abnormalities , Cilia , Eye Abnormalities , Kidney Diseases, Cystic , Retina/abnormalities , Zebrafish Proteins , Zebrafish , Abnormalities, Multiple/genetics , Abnormalities, Multiple/metabolism , Acetylation , Animals , Armadillo Domain Proteins/genetics , Armadillo Domain Proteins/metabolism , CRISPR-Cas Systems , Cerebellum/metabolism , Cilia/genetics , Cilia/metabolism , Disease Models, Animal , Eye Abnormalities/genetics , Eye Abnormalities/metabolism , Humans , Kidney Diseases, Cystic/genetics , Kidney Diseases, Cystic/metabolism , Peptides/genetics , Peptides/metabolism , Retina/metabolism , Zebrafish/genetics , Zebrafish/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...