Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 5155, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886411

ABSTRACT

Dysregulated epigenetic states are a hallmark of cancer and often arise from genetic alterations in epigenetic regulators. This includes missense mutations in histones, which, together with associated DNA, form nucleosome core particles. However, the oncogenic mechanisms of most histone mutations are unknown. Here, we demonstrate that cancer-associated histone mutations at arginines in the histone H3 N-terminal tail disrupt repressive chromatin domains, alter gene regulation, and dysregulate differentiation. We find that histone H3R2C and R26C mutants reduce transcriptionally repressive H3K27me3. While H3K27me3 depletion in cells expressing these mutants is exclusively observed on the minor fraction of histone tails harboring the mutations, the same mutants recurrently disrupt broad H3K27me3 domains in the chromatin context, including near developmentally regulated promoters. H3K27me3 loss leads to de-repression of differentiation pathways, with concordant effects between H3R2 and H3R26 mutants despite different proximity to the PRC2 substrate, H3K27. Functionally, H3R26C-expressing mesenchymal progenitor cells and murine embryonic stem cell-derived teratomas demonstrate impaired differentiation. Collectively, these data show that cancer-associated H3 N-terminal arginine mutations reduce PRC2 activity and disrupt chromatin-dependent developmental functions, a cancer-relevant phenotype.


Subject(s)
Arginine , Cell Differentiation , Histones , Mutation , Neoplasms , Polycomb Repressive Complex 2 , Histones/metabolism , Histones/genetics , Cell Differentiation/genetics , Arginine/metabolism , Animals , Humans , Mice , Polycomb Repressive Complex 2/metabolism , Polycomb Repressive Complex 2/genetics , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Chromatin/metabolism , Epigenesis, Genetic , Mesenchymal Stem Cells/metabolism , Cell Line, Tumor
2.
bioRxiv ; 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38562677

ABSTRACT

With our current appreciation of the complexity of eukaryotic transcription, whose dysregulation drives diseases including cancer, it is becoming apparent that identification of key events coordinating multiple aspects of transcriptional regulation is of special importance. To elucidate how assembly of RNA polymerase II (Pol II) with Mediator complex preinitiation complexes (PICs) and formation of transcription-permissive 3D chromatin organization are coordinated, we studied MED1, a representative subunit of the Mediator complex that acts to establish functional preinitiation complexes (PICs) that forms biomolecular condensates through an intrinsically disordered region (IDR) to facilitate transcription, and is implicated in the function of estrogen receptor α (hereafter ER) in ER-positive breast cancer (ER+ BC) cells. We found that MED1 is acetylated at 6 lysines in its IDR and, further, that MCF7 ER+ BC cells in which endogenous MED1 is replaced by an ectopic 6KR (non-acetylatable) mutant (6KR cells) exhibit enhanced cell growth and elevated expression of MED1-dependent genes. These results indicate an enhanced function of 6KR MED1 that may be attributed to two mechanisms: (1) reorganized PIC assembly, as indicated by increased MED1 and Pol II, decreased MED17, and equivalent ERα occupancies on chromatin, particularly at active enhancers and promoters; (2) sub-TAD chromatin unfolding, as revealed by HiCAR (Hi-C on accessible regulatory DNA) analyses. Furthermore, in vitro assays demonstrate distinct physio-chemical properties of liquid-liquid phase separation (LLPS) for 6KR versus 6KQ MED1 IDRs, and for non-acetylated versus CBP-acetylated WT MED1 IDR fragments. Related, Pol II CTD heptads are sequestered in 6KR and control WT MED1 IDR condensates, but not 6KQ and CBP-acetylated WT MED1 IDR condensates. These findings, in conjunction with recent reports of PIC structures, indicate that MED1 coordinates reorganization of the PIC machinery and the rewiring of regional chromatin organization through acetylation of its IDR. This study leads to an understanding of how the transition in phase behavior of a transcription cofactor acts as a mechanistic hub integrating linear and spatial chromatin functions to support gene expression, and have potential therapeutic implications for diseases involving MED1/Mediator-mediated transcription control.

3.
Am J Physiol Renal Physiol ; 326(6): F971-F980, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38634133

ABSTRACT

The dietary approach to stop hypertension (DASH) diet combines the antihypertensive effect of a low sodium and high potassium diet. In particular, the potassium component of the diet acts as a switch in the distal convoluted tubule to reduce sodium reabsorption, similar to a diuretic but without the side effects. Previous trials to understand the mechanism of the DASH diet were based on animal models and did not characterize changes in human ion channel protein abundance. More recently, protein cargo of urinary extracellular vesicles (uEVs) has been shown to mirror tissue content and physiological changes within the kidney. We designed an inpatient open label nutritional study transitioning hypertensive volunteers from an American style diet to DASH diet to examine physiological changes in adults with stage 1 hypertension otherwise untreated (Sacks FM, Svetkey LP, Vollmer WM, Appel LJ, Bray GA, Harsha D, Obarzanek E, Conlin PR, Miller ER 3rd, Simons-Morton DG, Karanja N, Lin PH; DASH-Sodium Collaborative Research Group. N Engl J Med 344: 3-10, 2001). Urine samples from this study were used for proteomic characterization of a large range of pure uEVs (small to large) to reveal kidney epithelium changes in response to the DASH diet. These samples were collected from nine volunteers at three time points, and mass spectrometry identified 1,800 proteins from all 27 samples. We demonstrated an increase in total SLC12A3 [sodium-chloride cotransporter (NCC)] abundance and a decrease in aquaporin-2 (AQP2) in uEVs with this mass spectrometry analysis, immunoblotting revealed a significant increase in the proportion of activated (phosphorylated) NCC to total NCC and a decrease in AQP2 from day 5 to day 11. This data demonstrates that the human kidney's response to nutritional interventions may be captured noninvasively by uEV protein abundance changes. Future studies need to confirm these findings in a larger cohort and focus on which factor drove the changes in NCC and AQP2, to which degree NCC and AQP2 contributed to the antihypertensive effect and address if some uEVs function also as a waste pathway for functionally inactive proteins rather than mirroring protein changes.NEW & NOTEWORTHY Numerous studies link DASH diet to lower blood pressure, but its mechanism is unclear. Urinary extracellular vesicles (uEVs) offer noninvasive insights, potentially replacing tissue sampling. Transitioning to DASH diet alters kidney transporters in our stage 1 hypertension cohort: AQP2 decreases, NCC increases in uEVs. This aligns with increased urine volume, reduced sodium reabsorption, and blood pressure decline. Our data highlight uEV protein changes as diet markers, suggesting some uEVs may function as waste pathways. We analyzed larger EVs alongside small EVs, and NCC in immunoblots across its molecular weight range.


Subject(s)
Aquaporin 2 , Extracellular Vesicles , Humans , Extracellular Vesicles/metabolism , Aquaporin 2/metabolism , Aquaporin 2/urine , Male , Female , Middle Aged , Dietary Approaches To Stop Hypertension , Solute Carrier Family 12, Member 3/metabolism , Sodium Chloride Symporters/metabolism , Hypertension/diet therapy , Hypertension/urine , Hypertension/metabolism , Hypertension/physiopathology , Adult , Diet, Sodium-Restricted , Blood Pressure , Proteomics/methods , Kidney/metabolism
4.
Nucleic Acids Res ; 52(9): 4950-4968, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38477352

ABSTRACT

Alterations in the tumor suppressor ATRX are recurrently observed in mesenchymal neoplasms. ATRX has multiple epigenetic functions including heterochromatin formation and maintenance and regulation of transcription through modulation of chromatin accessibility. Here, we show in murine mesenchymal progenitor cells (MPCs) that Atrx deficiency aberrantly activated mesenchymal differentiation programs. This includes adipogenic pathways where ATRX loss induced expression of adipogenic transcription factors and enhanced adipogenic differentiation in response to differentiation stimuli. These changes are linked to loss of heterochromatin near mesenchymal lineage genes together with increased chromatin accessibility and gains of active chromatin marks. We additionally observed depletion of H3K9me3 at transposable elements, which are derepressed including near mesenchymal genes where they could serve as regulatory elements. Finally, we demonstrated that loss of ATRX in a mesenchymal malignancy, undifferentiated pleomorphic sarcoma, results in similar epigenetic disruption and de-repression of transposable elements. Together, our results reveal a role for ATRX in maintaining epigenetic states and transcriptional repression in mesenchymal progenitors and tumor cells and in preventing aberrant differentiation in the progenitor context.


Subject(s)
Cell Differentiation , Heterochromatin , Mesenchymal Stem Cells , X-linked Nuclear Protein , Animals , Humans , Mice , Adipogenesis , DNA Transposable Elements/genetics , Epigenesis, Genetic , Heterochromatin/metabolism , Heterochromatin/genetics , Histones/metabolism , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , X-linked Nuclear Protein/genetics , X-linked Nuclear Protein/metabolism
5.
bioRxiv ; 2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37808786

ABSTRACT

Chromatin is a crucial regulator of gene expression and tightly controls development across species. Mutations in only one copy of multiple histone genes were identified in children with developmental disorders characterized by microcephaly, but their mechanistic roles in development remain unclear. Here we focus on dominant mutations affecting histone H4 lysine 91. These H4K91 mutants form aberrant nuclear puncta at specific heterochromatin regions. Mechanistically, H4K91 mutants demonstrate enhanced binding to the histone variant H3.3, and ablation of H3.3 or the H3.3-specific chaperone DAXX diminishes the mutant localization to chromatin. Our functional studies demonstrate that H4K91 mutant expression increases chromatin accessibility, alters developmental gene expression through accelerating pro-neural differentiation, and causes reduced mouse brain size in vivo, reminiscent of the microcephaly phenotypes of patients. Together, our studies unveil a distinct molecular pathogenic mechanism from other known histone mutants, where H4K91 mutants misregulate cell fate during development through abnormal genomic localization.

6.
bioRxiv ; 2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37609273

ABSTRACT

Alterations in the tumor suppressor ATRX are recurrently observed in several cancer types including sarcomas, which are mesenchymal neoplasms. ATRX has multiple epigenetic functions including heterochromatin formation and maintenance and regulation of transcription through modulation of chromatin accessibility. Here, we show in murine mesenchymal progenitor cells (MPCs) that Atrx deficiency aberrantly activated mesenchymal differentiation programs. This includes adipogenic pathways where ATRX loss induced expression of adipogenic transcription factors (Pparγ and Cebpα) and enhanced adipogenic differentiation in response to differentiation stimuli. These changes are linked to loss of heterochromatin near mesenchymal lineage genes together with increased chromatin accessibility and gains of active chromatin marks at putative enhancer elements and promoters. Finally, we observed depletion of H3K9me3 at transposable elements, which are derepressed including near mesenchymal genes where they could serve as regulatory elements. Our results demonstrate that ATRX functions to buffer against differentiation in mesenchymal progenitor cells, which has implications for understanding ATRX loss of function in sarcomas.

8.
Cancer Discov ; 13(1): 146-169, 2023 01 09.
Article in English | MEDLINE | ID: mdl-36264143

ABSTRACT

Menin interacts with oncogenic MLL1-fusion proteins, and small molecules that disrupt these associations are in clinical trials for leukemia treatment. By integrating chromatin-focused and genome-wide CRISPR screens with genetic, pharmacologic, and biochemical approaches, we discovered a conserved molecular switch between the MLL1-Menin and MLL3/4-UTX chromatin-modifying complexes that dictates response to Menin-MLL inhibitors. MLL1-Menin safeguards leukemia survival by impeding the binding of the MLL3/4-UTX complex at a subset of target gene promoters. Disrupting the Menin-MLL1 interaction triggers UTX-dependent transcriptional activation of a tumor-suppressive program that dictates therapeutic responses in murine and human leukemia. Therapeutic reactivation of this program using CDK4/6 inhibitors mitigates treatment resistance in leukemia cells that are insensitive to Menin inhibitors. These findings shed light on novel functions of evolutionarily conserved epigenetic mediators like MLL1-Menin and MLL3/4-UTX and are relevant to understand and target molecular pathways determining therapeutic responses in ongoing clinical trials. SIGNIFICANCE: Menin-MLL inhibitors silence a canonical HOX- and MEIS1-dependent oncogenic gene expression program in leukemia. We discovered a parallel, noncanonical transcriptional program involving tumor suppressor genes that are repressed in Menin-MLL inhibitor-resistant leukemia cells but that can be reactivated upon combinatorial treatment with CDK4/6 inhibitors to augment therapy responses. This article is highlighted in the In This Issue feature, p. 1.


Subject(s)
Leukemia , Myeloid-Lymphoid Leukemia Protein , Humans , Mice , Animals , Myeloid-Lymphoid Leukemia Protein/genetics , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Cell Line, Tumor , Transcription Factors/genetics , Leukemia/drug therapy , Chromatin , Mammals/genetics , Mammals/metabolism
9.
Nat Metab ; 4(11): 1495-1513, 2022 11.
Article in English | MEDLINE | ID: mdl-36411386

ABSTRACT

Food intake and body weight are tightly regulated by neurons within specific brain regions, including the brainstem, where acute activation of dorsal raphe nucleus (DRN) glutamatergic neurons expressing the glutamate transporter Vglut3 (DRNVglut3) drive a robust suppression of food intake and enhance locomotion. Activating Vglut3 neurons in DRN suppresses food intake and increases locomotion, suggesting that modulating the activity of these neurons might alter body weight. Here, we show that DRNVglut3 neurons project to the lateral hypothalamus (LHA), a canonical feeding center that also reduces food intake. Moreover, chronic DRNVglut3 activation reduces weight in both leptin-deficient (ob/ob) and leptin-resistant diet-induced obese (DIO) male mice. Molecular profiling revealed that the orexin 1 receptor (Hcrtr1) is highly enriched in DRN Vglut3 neurons, with limited expression elsewhere in the brain. Finally, an orally bioavailable, highly selective Hcrtr1 antagonist (CVN45502) significantly reduces feeding and body weight in DIO. Hcrtr1 is also co-expressed with Vglut3 in the human DRN, suggesting that there might be a similar effect in human. These results identify a potential therapy for obesity by targeting DRNVglut3 neurons while also establishing a general strategy for developing drugs for central nervous system disorders.


Subject(s)
Brain Stem , Leptin , Neurons , Weight Loss , Animals , Humans , Male , Mice , Brain Stem/metabolism , Leptin/metabolism , Mice, Obese , Neurons/metabolism , Obesity/drug therapy , Obesity/metabolism , Orexin Receptors/metabolism
10.
Elife ; 112022 06 27.
Article in English | MEDLINE | ID: mdl-35758650

ABSTRACT

Cells encountering stressful situations activate the integrated stress response (ISR) pathway to limit protein synthesis and redirect translation to better cope. The ISR has also been implicated in cancers, but redundancies in the stress-sensing kinases that trigger the ISR have posed hurdles to dissecting physiological relevance. To overcome this challenge, we targeted the regulatory node of these kinases, namely, the S51 phosphorylation site of eukaryotic translation initiation factor eIF2α and genetically replaced eIF2α with eIF2α-S51A in mouse squamous cell carcinoma (SCC) stem cells of skin. While inconsequential under normal growth conditions, the vulnerability of this ISR-null state was unveiled when SCC stem cells experienced proteotoxic stress. Seeking mechanistic insights into the protective roles of the ISR, we combined ribosome profiling and functional approaches to identify and probe the functional importance of translational differences between ISR-competent and ISR-null SCC stem cells when exposed to proteotoxic stress. In doing so, we learned that the ISR redirects translation to centrosomal proteins that orchestrate the microtubule dynamics needed to efficiently concentrate unfolded proteins at the microtubule-organizing center so that they can be cleared by the perinuclear degradation machinery. Thus, rather than merely maintaining survival during proteotoxic stress, the ISR also functions in promoting cellular recovery once the stress has subsided. Remarkably, this molecular program is unique to transformed skin stem cells, hence exposing a vulnerability in cancer that could be exploited therapeutically.


Subject(s)
Microtubule-Organizing Center , Stress, Physiological , Animals , Eukaryotic Initiation Factor-2/metabolism , Mice , Microtubule-Organizing Center/metabolism , Phosphorylation , Proteins/metabolism
11.
Cell Stem Cell ; 28(10): 1758-1774.e8, 2021 10 07.
Article in English | MEDLINE | ID: mdl-34320411

ABSTRACT

Known for nearly a century but through mechanisms that remain elusive, cells retain a memory of inflammation that equips them to react quickly and broadly to diverse secondary stimuli. Using murine epidermal stem cells as a model, we elucidate how cells establish, maintain, and recall inflammatory memory. Specifically, we landscape and functionally interrogate temporal, dynamic changes to chromatin accessibility, histone modifications, and transcription factor binding that occur during inflammation, post-resolution, and in memory recall following injury. We unearth an essential, unifying role for the general stress-responsive transcription factor FOS, which partners with JUN and cooperates with stimulus-specific STAT3 to establish memory; JUN then remains with other homeostatic factors on memory domains, facilitating rapid FOS re-recruitment and gene re-activation upon diverse secondary challenges. Extending our findings, we offer a comprehensive, potentially universal mechanism behind inflammatory memory and less discriminate recall phenomena with profound implications for tissue fitness in health and disease.


Subject(s)
Chromatin , Transcription Factors , Animals , Gene Expression Regulation , Mice , Transcriptional Activation
12.
Nat Genet ; 53(6): 794-800, 2021 06.
Article in English | MEDLINE | ID: mdl-33986537

ABSTRACT

Precise deposition of CpG methylation is critical for mammalian development and tissue homeostasis and is often dysregulated in human diseases. The localization of de novo DNA methyltransferase DNMT3A is facilitated by its PWWP domain recognizing histone H3 lysine 36 (H3K36) methylation1,2 and is normally depleted at CpG islands (CGIs)3. However, methylation of CGIs regulated by Polycomb repressive complexes (PRCs) has also been observed4-8. Here, we report that DNMT3A PWWP domain mutations identified in paragangliomas9 and microcephalic dwarfism10 promote aberrant localization of DNMT3A to CGIs in a PRC1-dependent manner. DNMT3A PWWP mutants accumulate at regions containing PRC1-mediated formation of monoubiquitylated histone H2A lysine 119 (H2AK119ub), irrespective of the amounts of PRC2-catalyzed formation of trimethylated histone H3 lysine 27 (H3K27me3). DNMT3A interacts with H2AK119ub-modified nucleosomes through a putative amino-terminal ubiquitin-dependent recruitment region, providing an alternative form of DNMT3A genomic targeting that is augmented by the loss of PWWP reader function. Ablation of PRC1 abrogates localization of DNMT3A PWWP mutants to CGIs and prevents aberrant DNA hypermethylation. Our study implies that a balance between DNMT3A recruitment by distinct reader domains guides de novo CpG methylation and may underlie the abnormal DNA methylation landscapes observed in select human cancer subtypes and developmental disorders.


Subject(s)
CpG Islands/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methylation/genetics , Polycomb-Group Proteins/metabolism , Animals , Catalysis , Cell Line , DNA (Cytosine-5-)-Methyltransferases/chemistry , DNA Methyltransferase 3A , Genetic Predisposition to Disease , Genome, Human , Histones/metabolism , Humans , Lysine/metabolism , Mice , Mutation/genetics , Nucleosomes/metabolism , Protein Domains , Ubiquitination
13.
Proc Natl Acad Sci U S A ; 117(41): 25732-25741, 2020 10 13.
Article in English | MEDLINE | ID: mdl-32989154

ABSTRACT

Bladder cancer prognosis is closely linked to the underlying differentiation state of the tumor, ranging from the less aggressive and most-differentiated luminal tumors to the more aggressive and least-differentiated basal tumors. Sequencing of bladder cancer has revealed that loss-of-function mutations in chromatin regulators and mutations that activate receptor tyrosine kinase (RTK) signaling frequently occur in bladder cancer. However, little is known as to whether and how these two types of mutations functionally interact or cooperate to regulate tumor growth and differentiation state. Here, we focus on loss of the histone demethylase UTX (also known as KDM6A) and activation of the RTK FGFR3, two events that commonly cooccur in muscle invasive bladder tumors. We show that UTX loss and FGFR3 activation cooperate to disrupt the balance of luminal and basal gene expression in bladder cells. UTX localized to enhancers surrounding many genes that are important for luminal cell fate, and supported the transcription of these genes in a catalytic-independent manner. In contrast to UTX, FGFR3 activation was associated with lower expression of luminal genes in tumors and FGFR inhibition increased transcription of these same genes in cell culture models. This suggests an antagonistic relationship between UTX and FGFR3. In support of this model, UTX loss-of-function potentiated FGFR3-dependent transcriptional effects and the presence of UTX blocked an FGFR3-mediated increase in the colony formation of bladder cells. Taken together, our study reveals how mutations in UTX and FGFR3 converge to disrupt bladder differentiation programs that could serve as a therapeutic target.


Subject(s)
Histone Demethylases/metabolism , Receptor, Fibroblast Growth Factor, Type 3/metabolism , Urinary Bladder Neoplasms/metabolism , Cell Differentiation , Chromatin/genetics , Chromatin/metabolism , Cohort Studies , Gene Expression Regulation, Neoplastic , Genes, Tumor Suppressor , Humans , Mutation , Receptor, Fibroblast Growth Factor, Type 3/genetics , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/physiopathology
14.
Cell Metab ; 31(4): 852-861.e6, 2020 04 07.
Article in English | MEDLINE | ID: mdl-32268116

ABSTRACT

Activating transcription factor 4 (ATF4) is a master transcriptional regulator of the integrated stress response (ISR) that enables cell survival under nutrient stress. The mechanisms by which ATF4 couples metabolic stresses to specific transcriptional outputs remain unknown. Using functional genomics, we identified transcription factors that regulate the responses to distinct amino acid deprivation conditions. While ATF4 is universally required under amino acid starvation, our screens yielded a transcription factor, Zinc Finger and BTB domain-containing protein 1 (ZBTB1), as uniquely essential under asparagine deprivation. ZBTB1 knockout cells are unable to synthesize asparagine due to reduced expression of asparagine synthetase (ASNS), the enzyme responsible for asparagine synthesis. Mechanistically, ZBTB1 binds to the ASNS promoter and promotes ASNS transcription. Finally, loss of ZBTB1 sensitizes therapy-resistant T cell leukemia cells to L-asparaginase, a chemotherapeutic that depletes serum asparagine. Our work reveals a critical regulator of the nutrient stress response that may be of therapeutic value.


Subject(s)
Asparagine/biosynthesis , Aspartate-Ammonia Ligase/metabolism , Leukemia , Repressor Proteins/physiology , Animals , Asparagine/deficiency , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation , Humans , Leukemia/metabolism , Leukemia/pathology , Mice, Inbred NOD , Mice, SCID , Transcription, Genetic
15.
J Biol Chem ; 291(38): 20042-54, 2016 09 16.
Article in English | MEDLINE | ID: mdl-27481946

ABSTRACT

Downstream of receptor tyrosine kinase and G protein-coupled receptor (GPCR) stimulation, the phosphatidylinositol 3,4,5-trisphosphate (PIP3)-dependent Rac exchange factor (PREX) family of guanine nucleotide exchange factors (GEFs) activates Rho GTPases, leading to important roles for PREX proteins in numerous cellular processes and diseases, including cancer. PREX1 and PREX2 GEF activity is activated by the second messengers PIP3 and Gßγ, and further regulation of PREX GEF activity occurs by phosphorylation. Stimulation of receptor tyrosine kinases by neuregulin and insulin-like growth factor 1 (IGF1) leads to the phosphorylation of PREX1; however, the kinases that phosphorylate PREX1 downstream of these ligands are not known. We recently reported that the p21-activated kinases (PAKs), which are activated by GTP-bound Ras-related C3 botulinum toxin substrate 1 (Rac1), mediate the phosphorylation of PREX2 after insulin receptor activation. Here we show that certain phosphorylation events on PREX1 after insulin, neuregulin, and IGF1 treatment are PAK-dependent and lead to a reduction in PREX1 binding to PIP3 Like PREX2, PAK-mediated phosphorylation also negatively regulates PREX1 GEF activity. Furthermore, the onset of PREX1 phosphorylation was delayed compared with the phosphorylation of AKT, supporting a model of negative feedback downstream of PREX1 activation. We also found that the phosphorylation of PREX1 after isoproterenol and prostaglandin E2-mediated GPCR activation is partially PAK-dependent and likely also involves protein kinase A, which is known to reduce PREX1 function. Our data point to multiple mechanisms of PREX1 negative regulation by PAKs within receptor tyrosine kinase and GPCR-stimulated signaling pathways that have important roles in diseases such as diabetes and cancer.


Subject(s)
Guanine Nucleotide Exchange Factors/metabolism , Receptor, Insulin/metabolism , Signal Transduction , p21-Activated Kinases/metabolism , Cyclic AMP-Dependent Protein Kinases/genetics , Cyclic AMP-Dependent Protein Kinases/metabolism , Dinoprostone/pharmacology , Guanine Nucleotide Exchange Factors/genetics , HEK293 Cells , Humans , Insulin/pharmacology , Insulin-Like Growth Factor I/pharmacology , Isoproterenol/pharmacology , MCF-7 Cells , Phosphatidylinositol Phosphates/genetics , Phosphatidylinositol Phosphates/metabolism , Phosphorylation/drug effects , Receptor, Insulin/genetics , p21-Activated Kinases/genetics , rac1 GTP-Binding Protein/genetics , rac1 GTP-Binding Protein/metabolism
16.
J Biol Chem ; 290(48): 28915-31, 2015 Nov 27.
Article in English | MEDLINE | ID: mdl-26438819

ABSTRACT

Phosphatidylinositol 3,4,5-trisphosphate (PIP3)-dependent Rac exchanger 2 (PREX2) is a guanine nucleotide exchange factor (GEF) for the Ras-related C3 botulinum toxin substrate 1 (Rac1) GTPase, facilitating the exchange of GDP for GTP on Rac1. GTP-bound Rac1 then activates its downstream effectors, including p21-activated kinases (PAKs). PREX2 and Rac1 are frequently mutated in cancer and have key roles within the insulin-signaling pathway. Rac1 can be inactivated by multiple mechanisms; however, negative regulation by insulin is not well understood. Here, we show that in response to being activated after insulin stimulation, Rac1 initiates its own inactivation by decreasing PREX2 GEF activity. Following PREX2-mediated activation of Rac1 by the second messengers PIP3 or Gßγ, we found that PREX2 was phosphorylated through a PAK-dependent mechanism. PAK-mediated phosphorylation of PREX2 reduced GEF activity toward Rac1 by inhibiting PREX2 binding to PIP3 and Gßγ. Cell fractionation experiments also revealed that phosphorylation prevented PREX2 from localizing to the cellular membrane. Furthermore, the onset of insulin-induced phosphorylation of PREX2 was delayed compared with AKT. Altogether, we propose that second messengers activate the Rac1 signal, which sets in motion a cascade whereby PAKs phosphorylate and negatively regulate PREX2 to decrease Rac1 activation. This type of regulation would allow for transient activation of the PREX2-Rac1 signal and may be relevant in multiple physiological processes, including diseases such as diabetes and cancer when insulin signaling is chronically activated.


Subject(s)
Guanine Nucleotide Exchange Factors/metabolism , Second Messenger Systems/physiology , p21-Activated Kinases/metabolism , rac1 GTP-Binding Protein/metabolism , Guanine Nucleotide Exchange Factors/genetics , HEK293 Cells , Humans , Phosphorylation/physiology , p21-Activated Kinases/genetics , rac1 GTP-Binding Protein/genetics
17.
Sci Signal ; 8(370): ra32, 2015 Mar 31.
Article in English | MEDLINE | ID: mdl-25829446

ABSTRACT

The tumor suppressor PTEN restrains cell migration and invasion by a mechanism that is independent of inhibition of the PI3K pathway and decreased activation of the kinase AKT. PREX2, a widely distributed GEF that activates the GTPase RAC1, binds to and inhibits PTEN. We used mouse embryonic fibroblasts and breast cancer cell lines to show that PTEN suppresses cell migration and invasion by blocking PREX2 activity. In addition to metabolizing the phosphoinositide PIP3, PTEN inhibited PREX2-induced invasion by a mechanism that required the tail domain of PTEN, but not its lipid phosphatase activity. Fluorescent nucleotide exchange assays revealed that PTEN inhibited the GEF activity of PREX2 toward RAC1. PREX2 is a frequently mutated GEF in cancer, and examination of human tumor data showed that PREX2 mutation was associated with high PTEN expression. Therefore, we tested whether cancer-derived somatic PREX2 mutants, which accelerate tumor formation of immortalized melanocytes, were inhibited by PTEN. The three stably expressed, somatic PREX2 cancer mutants that we tested were resistant to PTEN-mediated inhibition of invasion but retained the ability to inhibit the lipid phosphatase activity of PTEN. In vitro analysis showed that PTEN did not block the GEF activity of two PREX2 cancer mutants and had a reduced binding affinity for the third. Thus, PTEN antagonized migration and invasion by restraining PREX2 GEF activity, and PREX2 mutants are likely selected in cancer to escape PTEN-mediated inhibition of invasion.


Subject(s)
Breast Neoplasms/metabolism , Cell Movement/physiology , Guanine Nucleotide Exchange Factors/metabolism , Neoplasm Invasiveness/prevention & control , PTEN Phosphohydrolase/metabolism , rac1 GTP-Binding Protein/metabolism , Animals , Cell Line, Tumor , Cell Movement/genetics , DNA Primers/genetics , Fluorescent Antibody Technique , Gene Knockout Techniques , Genetic Vectors , Guanine Nucleotide Exchange Factors/genetics , Humans , Immunoblotting , Immunoprecipitation , Lentivirus , Mice , PTEN Phosphohydrolase/genetics , Polymerase Chain Reaction , RNA, Small Interfering/genetics , Statistics, Nonparametric
18.
Trends Biochem Sci ; 39(4): 183-90, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24656806

ABSTRACT

Phosphatase and tensin homolog deleted on chromosome ten (PTEN) is a phosphatase that is frequently altered in cancer. PTEN has phosphatase-dependent and -independent roles, and genetic alterations in PTEN lead to deregulation of protein synthesis, the cell cycle, migration, growth, DNA repair, and survival signaling. PTEN localization, stability, conformation, and phosphatase activity are controlled by an array of protein-protein interactions and post-translational modifications. Thus, PTEN-interacting and -modifying proteins have profound effects on the tumor suppressive functions of PTEN. Moreover, recent studies identified mechanisms by which PTEN can exit cells, via either exosomal export or secretion, and act on neighboring cells. This review focuses on modes of PTEN protein regulation and ways in which perturbations in this regulation may lead to disease.


Subject(s)
PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , Animals , Cell Cycle , Gene Expression Regulation , Genomic Instability , Humans , PTEN Phosphohydrolase/chemistry , Protein Processing, Post-Translational
19.
Proc Natl Acad Sci U S A ; 111(1): 155-60, 2014 Jan 07.
Article in English | MEDLINE | ID: mdl-24367090

ABSTRACT

Insulin activation of phosphoinositide 3-kinase (PI3K) signaling regulates glucose homeostasis through the production of phosphatidylinositol 3,4,5-trisphosphate (PIP3). The dual-specificity phosphatase and tensin homolog deleted on chromosome 10 (PTEN) blocks PI3K signaling by dephosphorylating PIP3, and is inhibited through its interaction with phosphatidylinositol 3,4,5-trisphosphate-dependent Rac exchanger 2 (P-REX2). The mechanism of inhibition and its physiological significance are not known. Here, we report that P-REX2 interacts with PTEN via two interfaces. The pleckstrin homology (PH) domain of P-REX2 inhibits PTEN by interacting with the catalytic region of PTEN, and the inositol polyphosphate 4-phosphatase domain of P-REX2 provides high-affinity binding to the postsynaptic density-95/Discs large/zona occludens-1-binding domain of PTEN. P-REX2 inhibition of PTEN requires C-terminal phosphorylation of PTEN to release the P-REX2 PH domain from its neighboring diffuse B-cell lymphoma homology domain. Consistent with its function as a PTEN inhibitor, deletion of Prex2 in fibroblasts and mice results in increased Pten activity and decreased insulin signaling in liver and adipose tissue. Prex2 deletion also leads to reduced glucose uptake and insulin resistance. In human adipose tissue, P-REX2 protein expression is decreased and PTEN activity is increased in insulin-resistant human subjects. Taken together, these results indicate a functional role for P-REX2 PH-domain-mediated inhibition of PTEN in regulating insulin sensitivity and glucose homeostasis and suggest that loss of P-REX2 expression may cause insulin resistance.


Subject(s)
GTPase-Activating Proteins/metabolism , Gene Expression Regulation, Enzymologic , Guanine Nucleotide Exchange Factors/metabolism , Insulin Resistance , PTEN Phosphohydrolase/antagonists & inhibitors , Animals , Binding Sites , Blood Proteins/chemistry , Catalytic Domain , Cell Proliferation , Fibroblasts/metabolism , Glucose/metabolism , HEK293 Cells , Homeostasis , Humans , Insulin/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Phosphoproteins/chemistry , Phosphorylation , Protein Binding
20.
PLoS One ; 8(3): e56576, 2013.
Article in English | MEDLINE | ID: mdl-23469174

ABSTRACT

Necroptosis is a regulated form of necrotic cell death that has been implicated in the pathogenesis of various diseases including intestinal inflammation and systemic inflammatory response syndrome (SIRS). In this work, we investigated the signaling mechanisms controlled by the necroptosis mediator receptor interacting protein-1 (RIP1) kinase. We show that Akt kinase activity is critical for necroptosis in L929 cells and plays a key role in TNFα production. During necroptosis, Akt is activated in a RIP1 dependent fashion through its phosphorylation on Thr308. In L929 cells, this activation requires independent signaling inputs from both growth factors and RIP1. Akt controls necroptosis through downstream targeting of mammalian Target of Rapamycin complex 1 (mTORC1). Akt activity, mediated in part through mTORC1, links RIP1 to JNK activation and autocrine production of TNFα. In other cell types, such as mouse lung fibroblasts and macrophages, Akt exhibited control over necroptosis-associated TNFα production without contributing to cell death. Overall, our results provide new insights into the mechanism of necroptosis and the role of Akt kinase in both cell death and inflammatory regulation.


Subject(s)
Fibroblasts/metabolism , Macrophages/metabolism , Necrosis/metabolism , Proto-Oncogene Proteins c-akt/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Tumor Necrosis Factor-alpha/biosynthesis , Animals , Apoptosis/genetics , Cell Line , Enzyme Activation , Fibroblasts/pathology , Gene Expression Regulation , Humans , Macrophages/pathology , Mechanistic Target of Rapamycin Complex 1 , Mice , Mitogen-Activated Protein Kinases/genetics , Mitogen-Activated Protein Kinases/metabolism , Multiprotein Complexes , Necrosis/genetics , Necrosis/pathology , Phosphorylation , Proteins/genetics , Proteins/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Signal Transduction , TOR Serine-Threonine Kinases , Threonine/metabolism , Tumor Necrosis Factor-alpha/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...