Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Coll Cardiol ; 82(13): 1343-1359, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37730292

ABSTRACT

Reducing the incidence and prevalence of standard modifiable cardiovascular risk factors (SMuRFs) is critical to tackling the global burden of coronary artery disease (CAD). However, a substantial number of individuals develop coronary atherosclerosis despite no SMuRFs. SMuRFless patients presenting with myocardial infarction have been observed to have an unexpected higher early mortality compared to their counterparts with at least 1 SMuRF. Evidence for optimal management of these patients is lacking. We assembled an international, multidisciplinary team to develop an evidence-based clinical pathway for SMuRFless CAD patients. A modified Delphi method was applied. The resulting pathway confirms underlying atherosclerosis and true SMuRFless status, ensures evidence-based secondary prevention, and considers additional tests and interventions for less typical contributors. This dedicated pathway for a previously overlooked CAD population, with an accompanying registry, aims to improve outcomes through enhanced adherence to evidence-based secondary prevention and additional diagnosis of modifiable risk factors observed.


Subject(s)
Atherosclerosis , Coronary Artery Disease , Myocardial Infarction , Humans , Coronary Artery Disease/epidemiology , Critical Pathways , Heart Disease Risk Factors
3.
Kidney360 ; 2(11): 1781-1792, 2021 11 25.
Article in English | MEDLINE | ID: mdl-35373008

ABSTRACT

Background: The antifibrotic effects of recombinant human relaxin (RLX) in the kidney are dependent on an interaction between its cognate receptor (RXFP1) and the angiotensin type 2 receptor (AT2R) in male models of disease. Whether RLX has therapeutic effects, which are also mediated via AT2R, in hypertensive adult and aged/reproductively senescent females is unknown. Thus, we determined whether treatment with RLX provides cardiorenal protection via an AT2R-dependent mechanism in adult and aged female stroke-prone spontaneously hypertensive rats (SHRSPs). Methods: In 6-month-old (6MO) and 15-month-old ([15MO]; reproductively senescent) female SHRSP, systolic BP (SBP), GFR, and proteinuria were measured before and after 4 weeks of treatment with vehicle (Veh), RLX (0.5 mg/kg per day s.c.), or RLX+PD123319 (AT2R antagonist; 3 mg/kg per day s.c.). Aortic endothelium-dependent relaxation and fibrosis of the kidney, heart, and aorta were assessed. Results: In 6MO SHRSP, RLX significantly enhanced GFR by approximately 25% (P=0.001) and reduced cardiac fibrosis (P=0.01) as compared with vehicle-treated counterparts. These effects were abolished or blunted by PD123319 coadministration. In 15MO females, RLX reduced interstitial renal (P=0.02) and aortic (P=0.003) fibrosis and lowered SBP (13±3 mm Hg; P=0.04) relative to controls. These effects were also blocked by PD123319 cotreatment (all P=0.05 versus RLX treatment alone). RLX also markedly improved vascular function by approximately 40% (P<0.001) in 15MO SHRSP, but this was not modulated by PD123319 cotreatment. Conclusions: The antifibrotic and organ-protective effects of RLX, when administered to a severe model of hypertension, conferred cardiorenal protection in adult and reproductively senescent female rats to a great extent via an AT2R-mediated mechanism.


Subject(s)
Hypertension , Receptor, Angiotensin, Type 2 , Relaxin , Animals , Female , Fibrosis , Hypertension/drug therapy , Male , Rats , Rats, Inbred SHR , Receptor, Angiotensin, Type 2/physiology , Recombinant Proteins/pharmacology , Relaxin/pharmacology
4.
J Am Soc Nephrol ; 30(11): 2191-2207, 2019 11.
Article in English | MEDLINE | ID: mdl-31511361

ABSTRACT

BACKGROUND: Recombinant human relaxin-2 (serelaxin), which has organ-protective actions mediated via its cognate G protein-coupled receptor relaxin family peptide receptor 1 (RXFP1), has emerged as a potential agent to treat fibrosis. Studies have shown that serelaxin requires the angiotensin II (AngII) type 2 receptor (AT2R) to ameliorate renal fibrogenesis in vitro and in vivo. Whether its antifibrotic actions are affected by modulation of the AngII type 1 receptor (AT1R), which is expressed on myofibroblasts along with RXFP1 and AT2R, is unknown. METHODS: We examined the signal transduction mechanisms of serelaxin when applied to primary rat renal and human cardiac myofibroblasts in vitro, and in three models of renal- or cardiomyopathy-induced fibrosis in vivo. RESULTS: The AT1R blockers irbesartan and candesartan abrogated antifibrotic signal transduction of serelaxin via RXFP1 in vitro and in vivo. Candesartan also ameliorated serelaxin's antifibrotic actions in the left ventricle of mice with cardiomyopathy, indicating that candesartan's inhibitory effects were not confined to the kidney. We also demonstrated in a transfected cell system that serelaxin did not directly bind to AT1Rs but that constitutive AT1R-RXFP1 interactions could form. To potentially explain these findings, we also demonstrated that renal and cardiac myofibroblasts expressed all three receptors and that antagonists acting at each receptor directly or allosterically blocked the antifibrotic effects of either serelaxin or an AT2R agonist (compound 21). CONCLUSIONS: These findings have significant implications for the concomitant use of RXFP1 or AT2R agonists with AT1R blockers, and suggest that functional interactions between the three receptors on myofibroblasts may represent new targets for controlling fibrosis progression.


Subject(s)
Kidney/pathology , Myocardium/pathology , Myofibroblasts/physiology , Receptor, Angiotensin, Type 1/physiology , Receptor, Angiotensin, Type 2/physiology , Receptors, G-Protein-Coupled/physiology , Receptors, Peptide/physiology , Angiotensin II Type 1 Receptor Blockers/therapeutic use , Animals , Benzimidazoles/therapeutic use , Biphenyl Compounds/therapeutic use , Cells, Cultured , Fibrosis , Humans , Male , Mice , Mice, Inbred C57BL , Rats , Rats, Sprague-Dawley , Receptor, Angiotensin, Type 2/agonists , Receptors, G-Protein-Coupled/agonists , Receptors, Peptide/agonists , Recombinant Proteins , Relaxin/physiology , Tetrazoles/therapeutic use
5.
Am J Physiol Renal Physiol ; 315(5): F1358-F1369, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30110566

ABSTRACT

Tissue hypoxia has been proposed as an important event in renal ischemia-reperfusion injury (IRI), particularly during the period of ischemia and in the immediate hours following reperfusion. However, little is known about renal oxygenation during the subacute phase of IRI. We employed four different methods to assess the temporal and spatial changes in tissue oxygenation during the subacute phase (24 h and 5 days after reperfusion) of a severe form of renal IRI in rats. We hypothesized that the kidney is hypoxic 24 h and 5 days after an hour of bilateral renal ischemia, driven by a disturbed balance between renal oxygen delivery (Do2) and oxygen consumption (V̇o2). Renal Do2 was not significantly reduced in the subacute phase of IRI. In contrast, renal V̇o2 was 55% less 24 h after reperfusion and 49% less 5 days after reperfusion than after sham ischemia. Inner medullary tissue Po2, measured by radiotelemetry, was 25 ± 12% (mean ± SE) greater 24 h after ischemia than after sham ischemia. By 5 days after reperfusion, tissue Po2 was similar to that in rats subjected to sham ischemia. Tissue Po2 measured by Clark electrode was consistently greater 24 h, but not 5 days, after ischemia than after sham ischemia. Cellular hypoxia, assessed by pimonidazole adduct immunohistochemistry, was largely absent at both time points, and tissue levels of hypoxia-inducible factors were downregulated following renal ischemia. Thus, in this model of severe IRI, tissue hypoxia does not appear to be an obligatory event during the subacute phase, likely because of the markedly reduced oxygen consumption.


Subject(s)
Acute Kidney Injury/metabolism , Kidney/blood supply , Kidney/metabolism , Oxygen Consumption , Oxygen/metabolism , Reperfusion Injury/metabolism , Acute Kidney Injury/pathology , Acute Kidney Injury/physiopathology , Animals , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Hypoxia , Disease Models, Animal , Hemodynamics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Kidney/pathology , Male , Oxygen/blood , Rats, Sprague-Dawley , Renal Circulation , Reperfusion Injury/pathology , Reperfusion Injury/physiopathology , Severity of Illness Index , Signal Transduction , Time Factors
6.
Biol Sex Differ ; 7: 57, 2016.
Article in English | MEDLINE | ID: mdl-27895890

ABSTRACT

BACKGROUND: Animal models have become valuable experimental tools for understanding the pathophysiology and therapeutic interventions in cardiovascular disease. Yet to date, few studies document the age- and sex-related differences in arterial pressure, circadian rhythm, and renal function in normotensive mice under basal conditions, across the life span. We hypothesized that mice display similar sex- and age-related differences in arterial pressure and renal function to humans. METHODS: Mean arterial pressure (MAP) and circadian rhythm of arterial pressure were measured over 3 days via radiotelemetry, in 3- and 5-month-old (adult) and 14- and 18-month-old (aged) FVB/N and in 5-month-old (adult) C57BL/6 male and female normotensive mice. In FVB/N mice, albuminuria from 24-h urine samples as well as body, heart, and kidney weights were measured at each age. RESULTS: Twenty-four-hour MAP was greater in males than females at 3, 5, and 14 months of age. A similar sex difference in arterial pressure was observed in C57BL/6 mice at 5 months of age. In FVB/N mice, 24-h MAP increased with age, with females displaying a greater increase between 3 and 18 months of age than males, such that MAP was no longer different between the sexes at 18 months of age. A circadian pattern was observed in arterial pressure, heart rate, and locomotor activity, with values for each greater during the active (night/dark) than the inactive (day/light) period. The night-day dip in MAP was greater in males and increased with age in both sexes. Albuminuria was greater in males than females, increased with age in both sexes, and rose to a greater level in males than females at 18 months of age. CONCLUSIONS: Arterial pressure and albuminuria increase in an age- and sex-specific manner in mice, similar to patterns observed in humans. Thus, mice represent a useful model for studying age and sex differences in the regulation of arterial pressure and renal disease. Understanding the mechanisms that underlie the pathophysiology of cardiovascular disease may lead to new and better-tailored therapies for men and women.

SELECTION OF CITATIONS
SEARCH DETAIL
...