Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38766087

ABSTRACT

Despite the presence of significant Alzheimer's disease (AD) pathology, characterized by amyloid ß (Aß) plaques and phosphorylated tau (pTau) tangles, some cognitively normal elderly individuals do not inevitably develop dementia. These findings give rise to the notion of cognitive 'resilience', suggesting maintained cognitive function despite the presence of AD neuropathology, highlighting the influence of factors beyond classical pathology. Cortical astroglial inflammation, a ubiquitous feature of symptomatic AD, shows a strong correlation with cognitive impairment severity, potentially contributing to the diversity of clinical presentations. However, noninvasively imaging neuroinflammation, particularly astrogliosis, using MRI remains a significant challenge. Here we sought to address this challenge and to leverage multidimensional (MD) MRI, a powerful approach that combines relaxation with diffusion MR contrasts, to map cortical astrogliosis in the human brain by accessing sub-voxel information. Our goal was to test whether MD-MRI can map astroglial pathology in the cerebral cortex, and if so, whether it can distinguish cognitive resiliency from dementia in the presence of hallmark AD neuropathological changes. We adopted a multimodal approach by integrating histological and MRI analyses using human postmortem brain samples. Ex vivo cerebral cortical tissue specimens derived from three groups comprised of non-demented individuals with significant AD pathology postmortem, individuals with both AD pathology and dementia, and non-demented individuals with minimal AD pathology postmortem as controls, underwent MRI at 7 T. We acquired and processed MD-MRI, diffusion tensor, and quantitative T 1 and T 2 MRI data, followed by histopathological processing on slices from the same tissue. By carefully co-registering MRI and microscopy data, we performed quantitative multimodal analyses, leveraging targeted immunostaining to assess MD-MRI sensitivity and specificity towards Aß, pTau, and glial fibrillary acidic protein (GFAP), a marker for astrogliosis. Our findings reveal a distinct MD-MRI signature of cortical astrogliosis, enabling the creation of predictive maps for cognitive resilience amid AD neuropathological changes. Multiple linear regression linked histological values to MRI changes, revealing that the MD-MRI cortical astrogliosis biomarker was significantly associated with GFAP burden (standardized ß=0.658, pFDR<0.0001), but not with Aß (standardized ß=0.009, p FDR =0.913) or pTau (standardized ß=-0.196, p FDR =0.051). Conversely, none of the conventional MRI parameters showed significant associations with GFAP burden in the cortex. While the extent to which pathological glial activation contributes to neuronal damage and cognitive impairment in AD is uncertain, developing a noninvasive imaging method to see its affects holds promise from a mechanistic perspective and as a potential predictor of cognitive outcomes.

2.
Aging Cell ; : e14166, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38659245

ABSTRACT

Gray matter (GM) alterations play a role in aging-related disorders like Alzheimer's disease and related dementias, yet MRI studies mainly focus on macroscopic changes. Although reliable indicators of atrophy, morphological metrics like cortical thickness lack the sensitivity to detect early changes preceding visible atrophy. Our study aimed at exploring the potential of diffusion MRI in unveiling sensitive markers of cortical and subcortical age-related microstructural changes and assessing their associations with cognitive and behavioral deficits. We leveraged the Human Connectome Project-Aging cohort that included 707 participants (394 female; median age = 58, range = 36-90 years) and applied the powerful mean apparent diffusion propagator model to measure microstructural parameters, along with comprehensive behavioral and cognitive test scores. Both macro- and microstructural GM characteristics were strongly associated with age, with widespread significant microstructural correlations reflective of cellular morphological changes, reduced cellular density, increased extracellular volume, and increased membrane permeability. Importantly, when correlating MRI and cognitive test scores, our findings revealed no link between macrostructural volumetric changes and neurobehavioral performance. However, we found that cellular and extracellular alterations in cortical and subcortical GM regions were associated with neurobehavioral performance. Based on these findings, it is hypothesized that increased microstructural heterogeneity and decreased neurite orientation dispersion precede macrostructural changes, and that they play an important role in subsequent cognitive decline. These alterations are suggested to be early markers of neurocognitive performance that may distinctly aid in identifying the mechanisms underlying phenotypic aging and subsequent age-related functional decline.

3.
Exp Gerontol ; 186: 112354, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38176601

ABSTRACT

Brain aging and common conditions of aging (e.g., hypertension) affect networks important in organizing information, processing speed and action programming (i.e., executive functions). Declines in these networks may affect timing and could have an impact on the ability to perceive and perform musical rhythms. There is evidence that participation in rhythmic musical activities may help to maintain and even improve executive functioning (near transfer), perhaps due to similarities in brain regions underlying timing, musical rhythm perception and production, and executive functioning. Rhythmic musical activities may present as a novel and fun activity for older adults to stimulate interacting brain regions that deteriorate with aging. However, relatively little is known about neurobehavioral interactions between aging, timing, rhythm perception and production, and executive functioning. In this review, we account for these brain-behavior interactions to suggest that deeper knowledge of overlapping brain regions associated with timing, rhythm, and cognition may assist in designing more targeted preventive and rehabilitative interventions to reduce age-related cognitive decline and improve quality of life in populations with neurodegenerative disease. Further research is needed to elucidate the functional relationships between brain regions associated with aging, timing, rhythm perception and production, and executive functioning to direct design of targeted interventions.


Subject(s)
Music , Neurodegenerative Diseases , Humans , Aged , Executive Function , Quality of Life , Brain , Aging/psychology
4.
bioRxiv ; 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38260525

ABSTRACT

Gray matter (GM) alterations play a role in aging-related disorders like Alzheimer's disease and related dementias, yet MRI studies mainly focus on macroscopic changes. Although reliable indicators of atrophy, morphological metrics like cortical thickness lack the sensitivity to detect early changes preceding visible atrophy. Our study aimed at exploring the potential of diffusion MRI in unveiling sensitive markers of cortical and subcortical age-related microstructural changes and assessing their associations with cognitive and behavioral deficits. We leveraged the Human Connectome Project-Aging cohort that included 707 unimpaired participants (394 female; median age = 58, range = 36-90 years) and applied the powerful mean apparent diffusion propagator model to measure microstructural parameters, along with comprehensive behavioral and cognitive test scores. Both macro- and microstructural GM characteristics were strongly associated with age, with widespread significant microstructural correlations reflective of cellular morphological changes, reduced cellular density, increased extracellular volume, and increased membrane permeability. Importantly, when correlating MRI and cognitive test scores, our findings revealed no link between macrostructural volumetric changes and neurobehavioral performance. However, we found that cellular and extracellular alterations in cortical and subcortical GM regions were associated with neurobehavioral performance. Based on these findings, it is hypothesized that increased microstructural heterogeneity and decreased neurite orientation dispersion precede macrostructural changes, and that they play an important role in subsequent cognitive decline. These alterations are suggested to be early markers of neurocognitive performance that may distinctly aid in identifying the mechanisms underlying phenotypic aging and subsequent age-related functional decline.

5.
Brain Commun ; 5(6): fcad258, 2023.
Article in English | MEDLINE | ID: mdl-37953850

ABSTRACT

Human evolution has seen the development of higher-order cognitive and social capabilities in conjunction with the unique laminar cytoarchitecture of the human cortex. Moreover, early-life cortical maldevelopment has been associated with various neurodevelopmental diseases. Despite these connections, there is currently no noninvasive technique available for imaging the detailed cortical laminar structure. This study aims to address this scientific and clinical gap by introducing an approach for imaging human cortical lamina. This method combines diffusion-relaxation multidimensional MRI with a tailored unsupervised machine learning approach that introduces enhanced microstructural sensitivity. This new imaging method simultaneously encodes the microstructure, the local chemical composition and importantly their correlation within complex and heterogenous tissue. To validate our approach, we compared the intra-cortical layers obtained using our ex vivo MRI-based method with those derived from Nissl staining of postmortem human brain specimens. The integration of unsupervised learning with diffusion-relaxation correlation MRI generated maps that demonstrate sensitivity to areal differences in cytoarchitectonic features observed in histology. Significantly, our observations revealed layer-specific diffusion-relaxation signatures, showing reductions in both relaxation times and diffusivities at the deeper cortical levels. These findings suggest a radial decrease in myelin content and changes in cell size and anisotropy, reflecting variations in both cytoarchitecture and myeloarchitecture. Additionally, we demonstrated that 1D relaxation and high-order diffusion MRI scalar indices, even when aggregated and used jointly in a multimodal fashion, cannot disentangle the cortical layers. Looking ahead, our technique holds the potential to open new avenues of research in human neurodevelopment and the vast array of disorders caused by disruptions in neurodevelopment.

SELECTION OF CITATIONS
SEARCH DETAIL
...