Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Physiol Heart Circ Physiol ; 320(2): H613-H629, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33337958

ABSTRACT

Creatine kinase (CK) is considered the main phosphotransfer system in the heart, important for overcoming diffusion restrictions and regulating mitochondrial respiration. It is substrate limited in creatine-deficient mice lacking l-arginine:glycine amidinotransferase (AGAT) or guanidinoacetate N-methyltranferase (GAMT). Our aim was to determine the expression, activity, and mitochondrial coupling of hexokinase (HK) and adenylate kinase (AK), as these represent alternative energy transfer systems. In permeabilized cardiomyocytes, we assessed how much endogenous ADP generated by HK, AK, or CK stimulated mitochondrial respiration and how much was channeled to mitochondria. In whole heart homogenates, and cytosolic and mitochondrial fractions, we measured the activities of AK, CK, and HK. Lastly, we assessed the expression of the major HK, AK, and CK isoforms. Overall, respiration stimulated by HK, AK, and CK was ∼25, 90, and 80%, respectively, of the maximal respiration rate, and ∼20, 0, and 25%, respectively, was channeled to the mitochondria. The activity, distribution, and expression of HK, AK, and CK did not change in GAMT knockout (KO) mice. In AGAT KO mice, we found no changes in AK, but we found a higher HK activity in the mitochondrial fraction, greater expression of HK I, but a lower stimulation of respiration by HK. Our findings suggest that mouse hearts depend less on phosphotransfer systems to facilitate ADP flux across the mitochondrial membrane. In AGAT KO mice, which are a model of pure creatine deficiency, the changes in HK may reflect changes in metabolism as well as influence mitochondrial regulation and reactive oxygen species production.NEW & NOTEWORTHY In creatine-deficient AGAT-/- and GAMT-/- mice, the myocardial creatine kinase system is substrate limited. It is unknown whether subcellular localization and mitochondrial ADP channeling by hexokinase and adenylate kinase may compensate as alternative phosphotransfer systems. Our results show no changes in adenylate kinase, which is the main alternative to creatine kinase in heart. However, we found increased expression and activity of hexokinase I in AGAT-/- cardiomyocytes. This could affect mitochondrial regulation and reactive oxygen species production.


Subject(s)
Amidinotransferases/deficiency , Amino Acid Metabolism, Inborn Errors/enzymology , Creatine/deficiency , Energy Metabolism , Guanidinoacetate N-Methyltransferase/deficiency , Hexokinase/metabolism , Intellectual Disability/enzymology , Language Development Disorders/enzymology , Mitochondria, Heart/enzymology , Movement Disorders/congenital , Myocytes, Cardiac/enzymology , Speech Disorders/enzymology , Adenosine Diphosphate/metabolism , Adenylate Kinase/metabolism , Amidinotransferases/genetics , Amino Acid Metabolism, Inborn Errors/genetics , Animals , Cell Respiration , Creatine Kinase/metabolism , Developmental Disabilities/enzymology , Developmental Disabilities/genetics , Disease Models, Animal , Female , Guanidinoacetate N-Methyltransferase/genetics , Intellectual Disability/genetics , Language Development Disorders/genetics , Male , Mice, Inbred C57BL , Mice, Knockout , Movement Disorders/enzymology , Movement Disorders/genetics , Speech Disorders/genetics
2.
Am J Physiol Heart Circ Physiol ; 320(2): H805-H825, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33275525

ABSTRACT

The creatine kinase system facilitates energy transfer between mitochondria and the major ATPases in the heart. Creatine-deficient mice, which lack arginine-glycine amidinotransferase (AGAT) to synthesize creatine and homoarginine, exhibit reduced cardiac contractility. We studied how the absence of a functional CK system influences calcium handling in isolated cardiomyocytes from AGAT-knockouts and wild-type littermates as well as in AGAT-knockout mice receiving lifelong creatine supplementation via the food. Using a combination of whole cell patch clamp and fluorescence microscopy, we demonstrate that the L-type calcium channel (LTCC) current amplitude and voltage range of activation were significantly lower in AGAT-knockout compared with wild-type littermates. Additionally, the inactivation of LTCC and the calcium transient decay were significantly slower. According to our modeling results, these changes can be reproduced by reducing three parameters in knockout mice when compared with wild-type: LTCC conductance, the exchange constant of Ca2+ transfer between subspace and cytosol, and SERCA activity. Because tissue expression of LTCC and SERCA protein were not significantly different between genotypes, this suggests the involvement of posttranslational regulatory mechanisms or structural reorganization. The AGAT-knockout phenotype of calcium handling was fully reversed by dietary creatine supplementation throughout life. Our results indicate reduced calcium cycling in cardiomyocytes from AGAT-knockouts and suggest that the creatine kinase system is important for the development of calcium handling in the heart.NEW & NOTEWORTHY Creatine-deficient mice lacking arginine-glycine amidinotransferase exhibit compromised cardiac function. Here, we show that this is at least partially due to an overall slowing of calcium dynamics. Calcium influx into the cytosol via the L-type calcium current (LTCC) is diminished, and the rate of the sarcoendoplasmic reticulum calcium ATPase (SERCA) pumping calcium back into the sarcoplasmic reticulum is slower. The expression of LTCC and SERCA did not change, suggesting that the changes are regulatory.


Subject(s)
Amidinotransferases/deficiency , Calcium Channels, L-Type/metabolism , Calcium Signaling/drug effects , Calcium/metabolism , Creatine/pharmacology , Myocytes, Cardiac/drug effects , Age Factors , Amidinotransferases/genetics , Animals , Female , Kinetics , Male , Membrane Potentials , Mice, Inbred C57BL , Mice, Knockout , Models, Cardiovascular , Myocytes, Cardiac/enzymology , Sarcoplasmic Reticulum/drug effects , Sarcoplasmic Reticulum/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism
3.
PLoS Comput Biol ; 16(12): e1008475, 2020 12.
Article in English | MEDLINE | ID: mdl-33351800

ABSTRACT

Biological measurements frequently involve measuring parameters as a function of time, space, or frequency. Later, during the analysis phase of the study, the researcher splits the recorded data trace into smaller sections, analyzes each section separately by finding a mean or fitting against a specified function, and uses the analysis results in the study. Here, we present the software that allows to analyze these data traces in a manner that ensures repeatability of the analysis and simplifies the application of FAIR (findability, accessibility, interoperability, and reusability) principles in such studies. At the same time, it simplifies the routine data analysis pipeline and gives access to a fast overview of the analysis results. For that, the software supports reading the raw data, processing the data as specified in the protocol, and storing all intermediate results in the laboratory database. The software can be extended by study- or hardware-specific modules to provide the required data import and analysis facilities. To simplify the development of the data entry web interfaces, that can be used to enter data describing the experiments, we released a web framework with an example implementation of such a site. The software is covered by open-source license and is available through several online channels.


Subject(s)
Software , Animals , Biomedical Research , Data Interpretation, Statistical , Databases, Factual , Humans , Internet , Kinetics , User-Computer Interface
4.
Sci Rep ; 10(1): 7956, 2020 05 14.
Article in English | MEDLINE | ID: mdl-32409787

ABSTRACT

Creatine kinase (CK) functions as an energy buffer in muscles. Its substrate, creatine, is generated by L-arginine:glycine amidinotransferase (AGAT) and guanidinoacetate N-methyltransferase (GAMT). Creatine deficiency has more severe consequences for AGAT than GAMT KO mice. In the present study, to characterize their muscle phenotype further, we recorded the weight of tibialis anterior (TA), extensor digitorum longus (EDL), gastrocnemius (GAS), plantaris (PLA) and soleus (SOL) from creatine-deficient AGAT and GAMT, KO and WT mice. In GAS, PLA and SOL representing glycolytic, intermediate and oxidative muscle, respectively, we recorded the activities of pyruvate kinase (PK), lactate dehydrogenase (LDH), citrate synthase (CS) and cytochrome oxidase (CO). In AGAT KO compared to WT mice, muscle atrophy and differences in marker enzyme activities were more pronounced in glycolytic than oxidative muscle. In GAMT KO compared to WT, the atrophy was modest, differences in PK and LDH activities were minor, and CS and CO activities were slightly higher in all muscles. SOL from males had higher CS and CO activities compared to females. Our results add detail to the characterization of AGAT and GAMT KO skeletal muscle phenotypes and illustrate the importance of taking into account differences between muscles, and differences between sexes.


Subject(s)
Amidinotransferases/genetics , Creatine/deficiency , Gene Knockout Techniques , Guanidinoacetate N-Methyltransferase/genetics , Hindlimb , Muscles/enzymology , Amidinotransferases/deficiency , Animals , Biomarkers/metabolism , Female , Guanidinoacetate N-Methyltransferase/deficiency , Male , Mice , Sex Characteristics , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...