Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Nanoscale ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38922329

ABSTRACT

Electron-assisted oxidation of Co-Si-based focused electron beam induced deposition (FEBID) materials is shown to form a 2-4 nm metal oxide surface layer on top of an electrically insulating silicon oxide layer less than 10 nm thick. Differences between thermal and electron-induced oxidation on the resulting microstructure are illustrated.

2.
ACS Appl Mater Interfaces ; 16(15): 19350-19358, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38563742

ABSTRACT

Understanding the electronic transport of metal-semiconductor heterojunctions is of utmost importance for a wide range of emerging nanoelectronic devices like adaptive transistors, biosensors, and quantum devices. Here, we provide a comparison and in-depth discussion of the investigated Schottky heterojunction devices based on Si and Ge nanowires contacted with pure single-crystal Al. Key for the fabrication of these devices is the selective solid-state metal-semiconductor exchange of Si and Ge nanowires into Al, delivering void-free, single-crystal Al contacts with flat Schottky junctions, distinct from the bulk counterparts. Thereof, a systematic comparison of the temperature-dependent charge carrier injection and transport in Si and Ge by means of current-bias spectroscopy is visualized by 2D colormaps. Thus, it reveals important insights into the operation mechanisms and regimes that cannot be exploited by conventional single-sweep output and transfer characteristics. Importantly, it was found that the Al-Si system shows symmetric effective Schottky barrier (SB) heights for holes and electrons, whereas the Al-Ge system reveals a highly transparent contact for holes due to Fermi level pinning close to the valence band with charge carrier injection saturation due to a thinned effective SB. Moreover, thermionic field emission limits the overall electron conduction, indicating a distinct SB for electrons.

3.
J Phys Chem C Nanomater Interfaces ; 128(7): 2967-2977, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38444783

ABSTRACT

The investigation of precursor classes for the fabrication of nanostructures is of specific interest for maskless fabrication and direct nanoprinting. In this study, the differences in material composition depending on the employed process are illustrated for focused-ion-beam- and focused-electron-beam-induced deposition (FIBID/FEBID) and compared to the thermal decomposition in chemical vapor deposition (CVD). This article reports on specific differences in the deposit composition and microstructure when the (H3Si)2Fe(CO)4 precursor is converted into an inorganic material. Maximum metal/metalloid contents of up to 90 at. % are obtained in FIBID deposits and higher than 90 at. % in CVD films, while FEBID with the same precursor provides material containing less than 45 at. % total metal/metalloid content. Moreover, the Fe:Si ratio is retained well in FEBID and CVD processes, but FIBID using Ga+ ions liberates more than 50% of the initial Si provided by the precursor. This suggests that precursors for FIBID processes targeting binary materials should include multiple bonding such as bridging positions for nonmetals. In addition, an in situ method for investigations of supporting thermal effects of precursor fragmentation during the direct-writing processes is presented, and the applicability of the precursor for nanoscale 3D FEBID writing is demonstrated.

4.
Nat Commun ; 15(1): 2193, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38467623

ABSTRACT

Additive nanotechnology enable curvilinear and three-dimensional (3D) magnetic architectures with tunable topology and functionalities surpassing their planar counterparts. Here, we experimentally reveal that 3D soft magnetic wireframe structures resemble compact manifolds and accommodate magnetic textures of high order vorticity determined by the Euler characteristic, χ. We demonstrate that self-standing magnetic tetrapods (homeomorphic to a sphere; χ = + 2) support six surface topological solitons, namely four vortices and two antivortices, with a total vorticity of + 2 equal to its Euler characteristic. Alternatively, wireframe structures with one loop (homeomorphic to a torus; χ = 0) possess equal number of vortices and antivortices, which is relevant for spin-wave splitters and 3D magnonics. Subsequent introduction of n holes into the wireframe geometry (homeomorphic to an n-torus; χ < 0) enables the accommodation of a virtually unlimited number of antivortices, which suggests their usefulness for non-conventional (e.g., reservoir) computation. Furthermore, complex stray-field topologies around these objects are of interest for superconducting electronics, particle trapping and biomedical applications.

5.
Nanomaterials (Basel) ; 13(21)2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37947751

ABSTRACT

Electron-induced fragmentation of the HFeCo3(CO)12 precursor allows direct-write fabrication of 3D nanostructures with metallic contents of up to >95 at %. While microstructure and composition determine the physical and functional properties of focused electron beam-induced deposits, they also provide fundamental insights into the decomposition process of precursors, as elaborated in this study based on EDX and TEM. The results provide solid information suggesting that different dominant fragmentation channels are active in single-spot growth processes for pillar formation. The use of the single source precursor provides a unique insight into high- and low-energy fragmentation channels being active in the same deposit formation process.

6.
Nanomaterials (Basel) ; 13(13)2023 Jun 24.
Article in English | MEDLINE | ID: mdl-37446442

ABSTRACT

Magnonics is a rapidly developing domain of nanomagnetism, with application potential in information processing systems. Realisation of this potential and miniaturisation of magnonic circuits requires their extension into the third dimension. However, so far, magnonic conduits are largely limited to thin films and 2D structures. Here, we introduce 3D magnonic nanoconduits fabricated by the direct write technique of focused-electron-beam induced deposition (FEBID). We use Brillouin light scattering (BLS) spectroscopy to demonstrate significant qualitative differences in spatially resolved spin-wave resonances of 2D and 3D nanostructures, which originates from the geometrically induced non-uniformity of the internal magnetic field. This work demonstrates the capability of FEBID as an additive manufacturing technique to produce magnetic 3D nanoarchitectures and presents the first report of BLS spectroscopy characterisation of FEBID conduits.

7.
Nanomaterials (Basel) ; 13(7)2023 Mar 29.
Article in English | MEDLINE | ID: mdl-37049311

ABSTRACT

Magnetic force microscopy (MFM) is a powerful extension of atomic force microscopy (AFM), which mostly uses nano-probes with functional coatings for studying magnetic surface features. Although well established, additional layers inherently increase apex radii, which reduce lateral resolution and also contain the risk of delamination, rendering such nano-probes doubtful or even useless. To overcome these limitations, we now introduce the additive direct-write fabrication of magnetic nano-cones via focused electron beam-induced deposition (FEBID) using an HCo3Fe(CO)12 precursor. The study first identifies a proper 3D design, confines the most relevant process parameters by means of primary electron energy and beam currents, and evaluates post-growth procedures as well. That way, highly crystalline nano-tips with minimal surface contamination and apex radii in the sub-15 nm regime are fabricated and benchmarked against commercial products. The results not only reveal a very high performance during MFM operation but in particular demonstrate virtually loss-free behavior after almost 8 h of continuous operation, thanks to the all-metal character. Even after more than 12 months of storage in ambient conditions, no performance loss is observed, which underlines the high overall performance of the here-introduced FEBID-based Co3Fe MFM nano-probes.

8.
Nanomaterials (Basel) ; 13(4)2023 Feb 04.
Article in English | MEDLINE | ID: mdl-36838995

ABSTRACT

Si1-xGex nanowires (NWs) were prepared by gold-supported chemical vapor deposition (CVD) using a single-source precursor with preformed Si-Ge bonds. Besides the tamed reactivity of the precursor, the approach reduces the process parameters associated with the control of decomposition characteristics and the dosing of individual precursors. The group IV alloy NWs are single crystalline with a constant diameter along their axis. During the wire growth by low pressure CVD, an Au-containing surface layer on the NWs forms by surface diffusion from the substrate, which can be removed by a combination of oxidation and etching. The electrical properties of the Si1-xGex/Au core-shell NWs are compared to the Si1-xGex NWs after Au removal. Core-shell NWs show signatures of metal-like behavior, while the purely semiconducting NWs reveal typical signatures of intrinsic Si1-xGex. The synthesized materials should be of high interest for applications in nano- and quantum-electronics.

9.
ACS Nano ; 17(5): 4704-4715, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36826847

ABSTRACT

Recent advancements in additive manufacturing have enabled the preparation of free-shaped 3D objects with feature sizes down to and below the micrometer scale. Among the fabrication methods, focused electron beam- and focused ion beam-induced deposition (FEBID and FIBID, respectively) associate a high flexibility and unmatched accuracy in 3D writing with a wide material portfolio, thereby allowing for the growth of metallic to insulating materials. The combination of the free-shaped 3D nanowriting with established chemical vapor deposition (CVD) techniques provides attractive opportunities to synthesize complex 3D core-shell heterostructures. Hence, this hybrid approach enables the fabrication of morphologically tunable layer-based nanostructures with the great potential of unlocking further functionalities. Here, the fundamentals of such a hybrid approach are demonstrated by preparing core-shell heterostructures using 3D FEBID scaffolds for site-selective CVD. In particular, 3D microbridges are printed by FEBID with the (CH3)3CH3C5H4Pt precursor and coated by thermal CVD using the Nb(NMe2)3(N-t-Bu) and HFeCo3(CO)12 precursors. Two model systems on the basis of CVD layers consisting of a superconducting NbC-based layer and a ferromagnetic Co3Fe layer are prepared and characterized with regard to their composition, microstructure, and magneto-transport properties.

10.
Inorg Chem ; 61(43): 17248-17255, 2022 Oct 31.
Article in English | MEDLINE | ID: mdl-36260357

ABSTRACT

A series of new mixed-substituted heteronuclear precursors with preformed Si-Ge bonds has been synthesized via a two-step synthesis protocol. The molecular sources combine convenient handling with sufficient thermal lability to provide access to group IV alloys with low carbon content. Differences in the molecule-material conversion by chemical vapor deposition (CVD) techniques are described and traced back to the molecular design. This study illustrates the possibility of tailoring the physical and chemical properties of single-source precursors for their application in the CVD of Si1-xGex coatings. Moreover, partial crystallization of the Si1-xGex has been achieved by Ga metal-supported CVD growth, which demonstrated the potential of the presented precursor class for the synthesis of crystalline group IV alloys.

11.
Nanomaterials (Basel) ; 12(7)2022 Mar 28.
Article in English | MEDLINE | ID: mdl-35407228

ABSTRACT

The material composition and electrical properties of nanostructures obtained from focused electron beam-induced deposition (FEBID) using manganese and vanadium carbonyl precursors have been investigated. The composition of the FEBID deposits has been compared with thin films derived by the thermal decomposition of the same precursors in chemical vapor deposition (CVD). FEBID of V(CO)6 gives access to a material with a V/C ratio of 0.63-0.86, while in CVD a lower carbon content with V/C ratios of 1.1-1.3 is obtained. Microstructural characterization reveals for V-based materials derived from both deposition techniques crystallites of a cubic phase that can be associated with VC1-xOx. In addition, the electrical transport measurements of direct-write VC1-xOx show moderate resistivity values of 0.8-1.2 × 103 µΩ·cm, a negligible influence of contact resistances and signatures of a granular metal in the temperature-dependent conductivity. Mn-based deposits obtained from Mn2(CO)10 contain ~40 at% Mn for FEBID and a slightly higher metal percentage for CVD. Exclusively insulating material has been observed in FEBID deposits as deduced from electrical conductivity measurements. In addition, strong tendencies for postgrowth oxidation have to be considered.

12.
ACS Appl Mater Interfaces ; 13(40): 48252-48259, 2021 Oct 13.
Article in English | MEDLINE | ID: mdl-34592822

ABSTRACT

Two new precursors for focused electron beam-induced deposition (FEBID) of cobalt silicides have been synthesized and evaluated. The H3SiCo(CO)4 and H2Si(Co(CO)4)2 single-source precursors retain the initial metal ratios and show low sensitivity to changes in the FEBID parameters such as acceleration voltage, beam current, and precursor pressure. The precursors allow the direct writing of material containing ∼55 to 60 at % total metal/metalloid content combined with high growth rates. During the deposition process an average of ∼80% of the carbonyl ligands are cleaved off in these planar deposits. Postgrowth electron curing does not change the deposits' composition, but resistivities decrease after the curing procedure. Temperature-dependent electrical properties indicate the presence of a granular metal for both cured samples and the as-grown Co2Si deposit, while the as-grown CoSi material is on the insulating side of the metal-insulator transition. The observed magnetoresistance behavior is indicative of tunneling magnetoresistance and is substantially reduced upon postgrowth irradiation treatment.

13.
Micromachines (Basel) ; 11(1)2019 Dec 25.
Article in English | MEDLINE | ID: mdl-31881650

ABSTRACT

Focused electron and ion beam-induced deposition (FEBID/FIBID) are direct-write techniques with particular advantages in three-dimensional (3D) fabrication of ferromagnetic or superconducting nanostructures. Recently, two novel precursors, HCo 3 Fe(CO) 12 and Nb(NMe 3 ) 2 (N-t-Bu), were introduced, resulting in fully metallic CoFe ferromagnetic alloys by FEBID and superconducting NbC by FIBID, respectively. In order to properly define the writing strategy for the fabrication of 3D structures using these precursors, their temperature-dependent average residence time on the substrate and growing deposit needs to be known. This is a prerequisite for employing the simulation-guided 3D computer aided design (CAD) approach to FEBID/FIBID, which was introduced recently. We fabricated a series of rectangular-shaped deposits by FEBID at different substrate temperatures between 5 ° C and 24 ° C using the precursors and extracted the activation energy for precursor desorption and the pre-exponential factor from the measured heights of the deposits using the continuum growth model of FEBID based on the reaction-diffusion equation for the adsorbed precursor.

14.
ACS Nano ; 13(7): 8047-8054, 2019 Jul 23.
Article in English | MEDLINE | ID: mdl-31282653

ABSTRACT

Highly oriented Ge0.81Sn0.19 nanowires have been synthesized by a low-temperature chemical vapor deposition growth technique. The nanostructures form by a self-seeded vapor-liquid-solid mechanism. In this process, liquid metallic Sn seeds enable the anisotropic crystal growth and act as a sole source of Sn for the formation of the metastable Ge1-xSnx semiconductor material. The strain relaxation for a lattice mismatch of ε = 2.94% between the Ge (111) substrate and the constant Ge0.81Sn0.19 composition of nanowires is confined to a transition zone of <100 nm. In contrast, Ge1-xSnx structures with diameters in the micrometer range show a 5-fold longer compositional gradient very similar to epitaxial thin-film growth. Effects of the Sn growth promoters' dimensions on the morphological and compositional evolution of Ge1-xSnx are described. The temperature- and laser power-dependent photoluminescence analyses verify the formation of a direct band gap material with emission in the mid-infrared region and values expected for unstrained Ge0.81Sn0.19 (e.g., band gap of 0.3 eV at room temperature). These materials  hold promise in applications such as thermal imaging and photodetection as well as building blocks for group IV-based mid- to near-IR photonics.

15.
ACS Nano ; 13(6): 6287-6296, 2019 Jun 25.
Article in English | MEDLINE | ID: mdl-31046238

ABSTRACT

Superconducting planar nanostructures are widely used in applications, e.g., for highly sensitive magnetometers and in basic research, e.g., to study finite size effects or vortex dynamics. In contrast, 3D superconducting nanostructures, despite their potential in quantum information processing and nanoelectronics, have been addressed only in a few pioneering experiments. This is due to the complexity of fabricating 3D nanostructures by conventional techniques such as electron-beam lithography and to the scarce number of superconducting materials available for direct-writing techniques, which enable the growth of 3D free-standing nanostructures. Here, we present a comparative study of planar nanowires and free-standing 3D nanowires fabricated by focused electron- and ion (Ga+)-beam induced deposition (FEBID and FIBID) using the precursor Nb(NMe2)3(N- t-Bu). FEBID nanowires contain about 67 atomic percent C, 22 atomic percent N, and 11 atomic percent Nb, while FIBID samples are composed of 43 atomic percent C, 13 atomic percent N, 15.5 atomic percent Ga, and 28.5 atomic percent Nb. Transmission electron microscopy shows that FEBID samples are amorphous, while FIBID samples exhibit a fcc NbC polycrystalline structure, with grains about 15-20 nm in diameter. Electrical transport measurements show that FEBID nanowires are highly resistive following a variable-range-hopping behavior. In contradistinction, FIBID planar nanowires become superconducting at Tc ≈ 5 K. In addition, the critical temperature of free-standing 3D nanowires is as high as Tc ≈ 11 K, which is close to the value of bulk NbC. In conclusion, FIBID-NbC is a promising material for the fabrication of superconducting nanowire single-photon detectors (SNSPD) and for the development of 3D superconductivity with applications in quantum information processing and nanoelectronics.

16.
Monatsh Chem ; 149(8): 1315-1320, 2018.
Article in English | MEDLINE | ID: mdl-30100629

ABSTRACT

ABSTRACT: The Ga-assisted formation of Ge nanorods and nanowires in solution has been demonstrated and a catalytic activity of the Ga seeds was observed. The synthesis of anisotropic single-crystalline Ge nanostructures was achieved at temperatures as low as 170 °C. Gallium not only serves as nucleation seed but is also incorporated in the Ge nanowires in higher concentrations than its thermodynamic solubility limit.

17.
Sci Rep ; 8(1): 6160, 2018 Apr 18.
Article in English | MEDLINE | ID: mdl-29670129

ABSTRACT

By the fabrication of periodically arranged nanomagnetic systems it is possible to engineer novel physical properties by realizing artificial lattice geometries that are not accessible via natural crystallization or chemical synthesis. This has been accomplished with great success in two dimensions in the fields of artificial spin ice and magnetic logic devices, to name just two. Although first proposals have been made to advance into three dimensions (3D), established nanofabrication pathways based on electron beam lithography have not been adapted to obtain free-form 3D nanostructures. Here we demonstrate the direct-write fabrication of freestanding ferromagnetic 3D nano-architectures. By employing micro-Hall sensing, we have determined the magnetic stray field generated by our free-form structures in an externally applied magnetic field and we have performed micromagnetic and macro-spin simulations to deduce the spatial magnetization profiles in the structures and analyze their switching behavior. Furthermore we show that the magnetic 3D elements can be combined with other 3D elements of different chemical composition and intrinsic material properties.

18.
Beilstein J Nanotechnol ; 9: 555-579, 2018.
Article in English | MEDLINE | ID: mdl-29527432

ABSTRACT

In the current contribution we present a comprehensive study on the heteronuclear carbonyl complex H2FeRu3(CO)13 covering its low energy electron induced fragmentation in the gas phase through dissociative electron attachment (DEA) and dissociative ionization (DI), its decomposition when adsorbed on a surface under controlled ultrahigh vacuum (UHV) conditions and exposed to irradiation with 500 eV electrons, and its performance in focused electron beam induced deposition (FEBID) at room temperature under HV conditions. The performance of this precursor in FEBID is poor, resulting in maximum metal content of 26 atom % under optimized conditions. Furthermore, the Ru/Fe ratio in the FEBID deposit (≈3.5) is higher than the 3:1 ratio predicted. This is somewhat surprising as in recent FEBID studies on a structurally similar bimetallic precursor, HFeCo3(CO)12, metal contents of about 80 atom % is achievable on a routine basis and the deposits are found to maintain the initial Co/Fe ratio. Low temperature (≈213 K) surface science studies on thin films of H2FeRu3(CO)13 demonstrate that electron stimulated decomposition leads to significant CO desorption (average of 8-9 CO groups per molecule) to form partially decarbonylated intermediates. However, once formed these intermediates are largely unaffected by either further electron irradiation or annealing to room temperature, with a predicted metal content similar to what is observed in FEBID. Furthermore, gas phase experiments indicate formation of Fe(CO)4 from H2FeRu3(CO)13 upon low energy electron interaction. This fragment could desorb at room temperature under high vacuum conditions, which may explain the slight increase in the Ru/Fe ratio of deposits in FEBID. With the combination of gas phase experiments, surface science studies and actual FEBID experiments, we can offer new insights into the low energy electron induced decomposition of this precursor and how this is reflected in the relatively poor performance of H2FeRu3(CO)13 as compared to the structurally similar HFeCo3(CO)12.

19.
ACS Sens ; 3(3): 727-734, 2018 03 23.
Article in English | MEDLINE | ID: mdl-29485272

ABSTRACT

A new method for the site-selective synthesis of nanowires has been developed to enable material growth with defined morphology and, at the same time, different composition on the same chip surface. The chemical vapor deposition approach for the growth of these nanowire-based resistive devices using micromembranes can be easily modified and represents a simple, adjustable fabrication process for the direct integration of nanowire meshes in multifunctional devices. This proof-of-concept study includes the deposition of SnO2, WO3, and Ge nanowires on the same chip. The individual resistors exhibit adequate gas sensing responses toward changing gas concentrations of CO, NO2, and humidity diluted in synthetic air. The data have been processed by principal component analysis with cluster responses that can be easily separated, and thus, the devices described herein are in principle suitable for environmental monitoring.


Subject(s)
Carbon Monoxide/analysis , Electronic Nose , Germanium/chemistry , Nanowires/chemistry , Oxides/chemistry , Tin Compounds/chemistry , Tungsten/chemistry , Particle Size , Surface Properties
20.
Materials (Basel) ; 11(2)2018 Feb 12.
Article in English | MEDLINE | ID: mdl-29439553

ABSTRACT

Three-dimensional (3D) nanomagnetism, where spin configurations extend into the vertical direction of a substrate plane allow for more complex, hierarchical systems and the design of novel magnetic effects. As an important step towards this goal, we have recently demonstrated the direct-write fabrication of freestanding ferromagnetic 3D nano-architectures of ferromagnetic CoFe in shapes of nano-tree and nano-cube structures by means of focused electron beam induced deposition. Here, we present a comprehensive characterization of the magnetic properties of these structures by local stray-field measurements using a high-resolution micro-Hall magnetometer. Measurements in a wide range of temperatures and different angles of the externally applied magnetic field with respect to the surface plane of the sensor are supported by corresponding micromagnetic simulations, which explain the overall switching behavior of in part rather complex magnetization configurations remarkably well. In particular, the simulations yield coercive and switching fields that are in good quantitative correspondence with the measured coercive and switching fields assuming a bulk metal content of 100 at % consisting of bcc Co 3 Fe. We show that thermally-unstable magnetization states can be repetitively prepared and their lifetime controlled at will, a prerequisite to realizing dynamic and thermally-active magnetic configurations if the building blocks are to be used in lattice structures.

SELECTION OF CITATIONS
SEARCH DETAIL