Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Invest ; 133(10)2023 05 15.
Article in English | MEDLINE | ID: mdl-36995778

ABSTRACT

Duchenne muscular dystrophy (DMD) is a lethal muscle disease caused by absence of the protein dystrophin, which acts as a structural link between the basal lamina and contractile machinery to stabilize muscle membranes in response to mechanical stress. In DMD, mechanical stress leads to exaggerated membrane injury and fiber breakdown, with fast fibers being the most susceptible to damage. A major contributor to this injury is muscle contraction, controlled by the motor protein myosin. However, how muscle contraction and fast muscle fiber damage contribute to the pathophysiology of DMD has not been well characterized. We explored the role of fast skeletal muscle contraction in DMD with a potentially novel, selective, orally active inhibitor of fast skeletal muscle myosin, EDG-5506. Surprisingly, even modest decreases of contraction (<15%) were sufficient to protect skeletal muscles in dystrophic mdx mice from stress injury. Longer-term treatment also decreased muscle fibrosis in key disease-implicated tissues. Importantly, therapeutic levels of myosin inhibition with EDG-5506 did not detrimentally affect strength or coordination. Finally, in dystrophic dogs, EDG-5506 reversibly reduced circulating muscle injury biomarkers and increased habitual activity. This unexpected biology may represent an important alternative treatment strategy for Duchenne and related myopathies.


Subject(s)
Muscular Dystrophy, Animal , Muscular Dystrophy, Duchenne , Mice , Animals , Dogs , Muscular Dystrophy, Duchenne/metabolism , Mice, Inbred mdx , Muscle, Skeletal/metabolism , Dystrophin/genetics , Muscle Contraction/physiology , Disease Models, Animal , Muscular Dystrophy, Animal/genetics , Muscular Dystrophy, Animal/metabolism
2.
ACS Chem Biol ; 14(4): 751-757, 2019 04 19.
Article in English | MEDLINE | ID: mdl-30840432

ABSTRACT

Colloidal drug aggregates have been a nuisance in drug screening, yet, because they inherently comprise drug-rich particles, they may be useful in vivo if issues of stability can be addressed. As the first step toward answering this question, we optimized colloidal drug aggregate formulations using a fluorescence-based assay to study fulvestrant colloidal formation and stability in high (90%) serum conditions in vitro. We show, for the first time, that the critical aggregation concentration of fulvestrant depends on media composition and increases with serum concentration. Excipients, such as polysorbate 80, stabilize fulvestrant colloids in 90% serum in vitro for over 48 h. Using fulvestrant and an investigational pro-drug, pentyloxycarbonyl-( p-aminobenzyl) doxazolidinylcarbamate (PPD), as proof-of-concept colloidal formulations, we demonstrate that the in vivo plasma half-life for stabilized colloids is greater than their respective monomeric forms. These studies demonstrate the potential of turning the nuisance of colloidal drug aggregation into an opportunity for drug-rich formulations.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Carbamates/chemistry , Carbamates/pharmacokinetics , Doxorubicin/analogs & derivatives , Oxazoles/chemistry , Oxazoles/pharmacokinetics , Prodrugs/chemistry , Prodrugs/pharmacokinetics , Animals , Antineoplastic Agents/blood , Carbamates/blood , Colloids , Doxorubicin/blood , Doxorubicin/chemistry , Doxorubicin/pharmacokinetics , Drug Stability , Excipients , Female , Fulvestrant/chemistry , Humans , MCF-7 Cells , Mice , Neoplasm Transplantation , Oxazoles/blood , Polysorbates/chemistry , Proof of Concept Study , Serum
SELECTION OF CITATIONS
SEARCH DETAIL
...