Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Antioxid Redox Signal ; 29(2): 111-127, 2018 07 10.
Article in English | MEDLINE | ID: mdl-29065700

ABSTRACT

AIMS: Mesenchymal stromal cells (MSCs) are heterogeneous cells from adult tissues that are able to differentiate in vitro into adipocytes, osteoblasts, or chondrocytes. Such cells are widely studied in regenerative medicine. However, the success of cellular therapy depends on the cell survival. Heme oxygenase-1 (HO-1, encoded by the Hmox1 gene), an enzyme converting heme to biliverdin, carbon monoxide, and Fe2+, is cytoprotective and can affect stem cell performance. Therefore, our study aimed at assessing whether Hmox1 is critical for survival and functions of murine bone marrow MSCs. RESULTS: Both MSC Hmox1+/+ and Hmox1-/- showed similar phenotype, differentiation capacities, and production of cytokines or growth factors. Hmox1+/+ and Hmox1-/- cells showed similar survival in response to 50 µmol/L hemin even in increased glucose concentration, conditions that were unfavorable for Hmox1-/- bone marrow-derived proangiogenic cells (BDMC). Hmox1+/+ MSCs but not fibroblasts retained low ROS levels even after prolonged incubation with 50 µmol/L hemin, although both cell types have a comparable Hmox1 expression and similarly increase its levels in response to hemin. MSCs Hmox1-/- treated with hemin efficiently induced expression of a vast panel of antioxidant genes, especially enzymes of the glutathione pathway. Innovation and Conclusion: Hmox1 overexpression is a popular strategy to enhance viability and performance of MSCs after the transplantation. However, murine MSCs Hmox1-/- do not differ from wild-type MSCs in phenotype and functions. MSC Hmox1-/- show better resistance to hemin than fibroblasts and BDMCs and rapidly react to the stress by upregulation of quintessential genes in antioxidant response. Antioxid. Redox Signal. 00, 000-000.


Subject(s)
Heme Oxygenase-1/genetics , Membrane Proteins/genetics , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Oxidative Stress , Animals , Antioxidants/metabolism , Bone Marrow Cells/cytology , Bone Marrow Cells/enzymology , Bone Marrow Cells/immunology , Bone Marrow Cells/metabolism , Cell Differentiation , Cell Survival/drug effects , Cytokines/biosynthesis , Fibroblasts/drug effects , Fibroblasts/metabolism , Gene Expression , Heme Oxygenase (Decyclizing)/metabolism , Hemin/toxicity , Hydrogen Peroxide/metabolism , Hydrogen Peroxide/toxicity , Mesenchymal Stem Cells/enzymology , Mesenchymal Stem Cells/immunology , Mice , Mice, Knockout , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...