Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 28(20)2023 Oct 22.
Article in English | MEDLINE | ID: mdl-37894695

ABSTRACT

KP46 (tris(hydroxyquinolinato)gallium(III)) is an experimental, orally administered anticancer drug. Its absorption, delivery to tumours, and mode of action are poorly understood. We aimed to gain insight into these issues using gallium-67 and gallium-68 as radiotracers with SPECT and PET imaging in mice. [67Ga]KP46 and [68Ga]KP46, compared with [68Ga]gallium acetate, were used for logP measurements, in vitro cell uptake studies in A375 melanoma cells, and in vivo imaging in mice bearing A375 tumour xenografts up to 48 h after intravenous (tracer level) and oral (tracer and bulk) administration. 68Ga was more efficiently accumulated in A375 cells in vitro when presented as [68Ga]KP46 than as [68Ga]gallium acetate, but the reverse was observed when intravenously administered in vivo. After oral administration of [68/67Ga]KP46, absorption of 68Ga and 67Ga from the GI tract and delivery to tumours were poor, with the majority excreted in faeces. By 48 h, low but measurable amounts were accumulated in tumours. The distribution in tissues of absorbed radiogallium and octanol extraction of tissues suggested trafficking as free gallium rather than as KP46. We conclude that KP46 likely acts as a slow releaser of gallium ions which are inefficiently absorbed from the GI tract and trafficked to tissues, including tumour and bone.


Subject(s)
Antineoplastic Agents , Gallium , Neoplasms , Organometallic Compounds , Humans , Animals , Mice , Gallium Radioisotopes/therapeutic use , Gallium/pharmacology , Organometallic Compounds/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Positron-Emission Tomography , Tomography, Emission-Computed, Single-Photon , Acetates/therapeutic use
2.
Metallomics ; 14(10)2022 10 18.
Article in English | MEDLINE | ID: mdl-36201445

ABSTRACT

Non-invasive imaging techniques to dynamically map whole-body trafficking of essential metals in vivo in health and diseases are needed. Despite 62Zn having appropriate physical properties for positron emission tomography (PET) imaging (half-life, 9.3 h; positron emission, 8.2%), its complex decay via 62Cu (half-life, 10 min; positron emission, 97%) has limited its use. We aimed to develop a method to extract 62Zn from a 62Zn/62Cu generator, and to investigate its use for in vivo imaging of zinc trafficking despite its complex decay. 62Zn prepared by proton irradiation of natural copper foil was used to construct a conventional 62Zn/62Cu generator. 62Zn was eluted using trisodium citrate and used for biological experiments, compared with 64Cu in similar buffer. PET/CT imaging and ex vivo tissue radioactivity measurements were performed following intravenous injection in healthy mice. [62Zn]Zn-citrate was readily eluted from the generator with citrate buffer. PET imaging with the eluate demonstrated biodistribution similar to previous observations with the shorter-lived 63Zn (half-life 38.5 min), with significant differences compared to [64Cu]Cu-citrate, notably in pancreas (>10-fold higher at 1 h post-injection). Between 4 and 24 h, 62Zn retention in liver, pancreas, and kidney declined over time, while brain uptake increased. Like 64Cu, 62Zn showed hepatobiliary excretion from liver to intestines, unaffected by fasting. Although it offers limited reliability of scanning before 1 h post-injection, 62Zn-PET allows investigation of zinc trafficking in vivo for >24 h and hence provides a useful new tool to investigate diseases where zinc homeostasis is disrupted in preclinical models and humans.


Subject(s)
Thiosemicarbazones , Zinc Radioisotopes , Animals , Citrates , Copper , Copper Radioisotopes , Humans , Mice , Positron Emission Tomography Computed Tomography , Positron-Emission Tomography/methods , Protons , Reproducibility of Results , Tissue Distribution , Tomography, X-Ray Computed , Zinc
3.
RSC Chem Biol ; 3(5): 495-518, 2022 May 11.
Article in English | MEDLINE | ID: mdl-35656481

ABSTRACT

Several specific metallic elements must be present in the human body to maintain health and function. Maintaining the correct quantity (from trace to bulk) and location at the cell and tissue level is essential. The study of the biological role of metals has become known as metallomics. While quantities of metals in cells and tissues can be readily measured in biopsy and autopsy samples by destructive analytical techniques, their trafficking and its role in health and disease are poorly understood. Molecular imaging with radionuclides - positron emission tomography (PET) and single photon emission computed tomography (SPECT) - is emerging as a means to non-invasively study the acute trafficking of essential metals between organs, non-invasively and in real time, in health and disease. PET scanners are increasingly widely available in hospitals, and methods for producing radionuclides of some of the key essential metals are developing fast. This review summarises recent developments in radionuclide imaging technology that permit such investigations, describes the radiological and physicochemical properties of key radioisotopes of essential trace metals and useful analogues, and introduces current and potential future applications in preclinical and clinical investigations to study the biology of essential trace metals in health and disease.

4.
Metallomics ; 12(10): 1508-1520, 2020 10 21.
Article in English | MEDLINE | ID: mdl-32959856

ABSTRACT

Copper imbalance is implicated in many diseases, including cancer. Copper in blood is mainly transported by carrier proteins but a small fraction is bound to low molecular weight species, possibly amino acids. Their roles in cellular copper delivery are unknown. Our aim was to test whether accumulation of 64Cu into cancer-derived cells can be influenced by copper-binding serum amino acids. In vitro cellular accumulation of 64Cu was measured in Hank's Balanced Salt Solution in the presence of 100 µM l-histidine, l-methionine, l-cysteine and l-threonine. l-Cysteine markedly increased 64Cu accumulation and retention in DU145, PC3 and SK-OV-3 cells, while some other cell lines did not show an effect. This effect was not due to 64Cu delivery in the form of a 64Cu-cysteine complex, nor to reduction of 64Cu(ii) to 64Cu(i) by l-cysteine. Pre-incubation of cells with l-cysteine increased 64Cu accumulation, even if l-cysteine was removed from HBSS before 64Cu was added. The effect of l-cysteine on 64Cu accumulation was not mediated by increased glutathione synthesis. Despite the demonstrable in vitro effect, pre-injection of l-cysteine precursor N-acetyl-cysteine (NAC) in vivo did not enhance 64Cu delivery to DU145 xenografts in mice. Instead, it decreased 64Cu accumulation in the DU145 tumour and in brain, as assessed by PET imaging. We conclude that 64Cu is not delivered to DU145 cancer cells in vitro as a complex with amino acids but its cellular accumulation is enhanced by l-cysteine or NAC influx to cells. The latter effect was not demonstrable in vivo in the DU145 xenograft.


Subject(s)
Copper/metabolism , Cysteine/metabolism , Prostatic Neoplasms/metabolism , Biological Transport , Cell Line, Tumor , Copper Radioisotopes/metabolism , Humans , Male , PC-3 Cells , Positron-Emission Tomography
5.
J Nucl Med ; 59(9): 1355-1359, 2018 09.
Article in English | MEDLINE | ID: mdl-29976696

ABSTRACT

Essential trace metals such as copper, zinc, iron, and manganese perform critical functions in cellular and physiologic processes including catalytic, regulatory, and signaling roles. Disturbed metal homeostasis is associated with the pathogenesis of diseases such as dementia, cancer, and inherited metabolic abnormalities. Intracellular pathways involving essential metals have been extensively studied but whole-body fluxes and transport between different compartments remain poorly understood. The growing availability of PET scanners and positron-emitting isotopes of key essential metals, particularly 64Cu, 63Zn, and 52Mn, provide new tools with which to study these processes in vivo. This review highlights opportunities that now present themselves, exemplified by studies of copper metabolism that are in the vanguard of a new research front in molecular imaging: "PET metallomics."


Subject(s)
Disease , Health , Positron-Emission Tomography/methods , Trace Elements/metabolism , Homeostasis , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...