Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Form Methods Syst Des ; 61(1): 90-109, 2022.
Article in English | MEDLINE | ID: mdl-38046129

ABSTRACT

We describe the Amber tool for proving and refuting the termination of a class of probabilistic while-programs with polynomial arithmetic, in a fully automated manner. Amber combines martingale theory with properties of asymptotic bounding functions and implements relaxed versions of existing probabilistic termination proof rules to prove/disprove (positive) almost sure termination of probabilistic loops. Amber supports programs parametrized by symbolic constants and drawing from common probability distributions. Our experimental comparisons give practical evidence of Amber outperforming existing state-of-the-art tools.

2.
IEEE/ACM Trans Comput Biol Bioinform ; 16(5): 1586-1597, 2019.
Article in English | MEDLINE | ID: mdl-30530334

ABSTRACT

Implantable medical devices are safety-critical systems whose incorrect operation can jeopardize a patient's health, and whose algorithms must meet tight platform constraints like memory consumption and runtime. In particular, we consider here the case of implantable cardioverter defibrillators, where peak detection algorithms and various others discrimination algorithms serve to distinguish fatal from non-fatal arrhythmias in a cardiac signal. Motivated by the need for powerful formal methods to reason about the performance of arrhythmia detection algorithms, we show how to specify all these algorithms using Quantitative Regular Expressions (QREs). QRE is a formal language to express complex numerical queries over data streams, with provable runtime and memory consumption guarantees. We show that QREs are more suitable than classical temporal logics to express in a concise and easy way a range of peak detectors (in both the time and wavelet domains) and various discriminators at the heart of today's arrhythmia detection devices. The proposed formalization also opens the way to formal analysis and rigorous testing of these detectors' correctness and performance, alleviating the regulatory burden on device developers when modifying their algorithms. We demonstrate the effectiveness of our approach by executing QRE-based monitors on real patient data on which they yield results on par with the results reported in the medical literature.


Subject(s)
Arrhythmias, Cardiac/diagnosis , Electrocardiography/methods , Signal Processing, Computer-Assisted , Algorithms , Arrhythmias, Cardiac/physiopathology , Humans
3.
Form Methods Syst Des ; 53(1): 83-112, 2018.
Article in English | MEDLINE | ID: mdl-30956399

ABSTRACT

In cyber-physical systems (CPS), physical behaviors are typically controlled by digital hardware. As a consequence, continuous behaviors are discretized by sampling and quantization prior to their processing. Quantifying the similarity between CPS behaviors and their specification is an important ingredient in evaluating correctness and quality of such systems. We propose a novel procedure for measuring robustness between digitized CPS signals and signal temporal logic (STL) specifications. We first equip STL with quantitative semantics based on the weighted edit distance, a metric that quantifies both space and time mismatches between digitized CPS behaviors. We then develop a dynamic programming algorithm for computing the robustness degree between digitized signals and STL specifications. In order to promote hardware-based monitors we implemented our approach in FPGA. We evaluated it on automotive benchmarks defined by research community, and also on realistic data obtained from magnetic sensor used in modern cars.

4.
PLoS Comput Biol ; 12(1): e1004591, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26795950

ABSTRACT

As the amount of biological data in the public domain grows, so does the range of modeling and analysis techniques employed in systems biology. In recent years, a number of theoretical computer science developments have enabled modeling methodology to keep pace. The growing interest in systems biology in executable models and their analysis has necessitated the borrowing of terms and methods from computer science, such as formal analysis, model checking, static analysis, and runtime verification. Here, we discuss the most important and exciting computational methods and tools currently available to systems biologists. We believe that a deeper understanding of the concepts and theory highlighted in this review will produce better software practice, improved investigation of complex biological processes, and even new ideas and better feedback into computer science.


Subject(s)
Models, Biological , Systems Biology , Computer Simulation , Software
5.
Article in English | MEDLINE | ID: mdl-23929858

ABSTRACT

We present the Spiral Classification Algorithm (SCA), a fast and accurate algorithm for classifying electrical spiral waves and their associated breakup in cardiac tissues. The classification performed by SCA is an essential component of the detection and analysis of various cardiac arrhythmic disorders, including ventricular tachycardia and fibrillation. Given a digitized frame of a propagating wave, SCA constructs a highly accurate representation of the front and the back of the wave, piecewise interpolates this representation with cubic splines, and subjects the result to an accurate curvature analysis. This analysis is more comprehensive than methods based on spiral-tip tracking, as it considers the entire wave front and back. To increase the smoothness of the resulting symbolic representation, the SCA uses weighted overlapping of adjacent segments which increases the smoothness at join points. SCA has been applied to a number of representative types of spiral waves, and, for each type, a distinct curvature evolution in time (signature) has been identified. Distinct signatures have also been identified for spiral breakup. These results represent a significant first step in automatically determining parameter ranges for which a computational cardiac-cell network accurately reproduces a particular kind of cardiac arrhythmia, such as ventricular fibrillation.


Subject(s)
Algorithms , Arrhythmias, Cardiac/physiopathology , Heart/physiology , Models, Cardiovascular , Signal Processing, Computer-Assisted , Computer Simulation , Electrocardiography , Heart/physiopathology , Humans
6.
J Integr Bioinform ; 9(1): 192, 2012 Jul 09.
Article in English | MEDLINE | ID: mdl-22773116

ABSTRACT

The huge and dynamic amount of bioinformatic resources (e.g., data and tools) available nowadays in Internet represents a big challenge for biologists ­for what concerns their management and visualization­ and for bioinformaticians ­for what concerns the possibility of rapidly creating and executing in-silico experiments involving resources and activities spread over the WWW hyperspace. Any framework aiming at integrating such resources as in a physical laboratory has imperatively to tackle ­and possibly to handle in a transparent and uniform way­ aspects concerning physical distribution, semantic heterogeneity, co-existence of different computational paradigms and, as a consequence, of different invocation interfaces (i.e., OGSA for Grid nodes, SOAP for Web Services, Java RMI for Java objects, etc.). The framework UBioLab has been just designed and developed as a prototype following the above objective. Several architectural features ­as those ones of being fully Web-based and of combining domain ontologies, Semantic Web and workflow techniques­ give evidence of an effort in such a direction. The integration of a semantic knowledge management system for distributed (bioinformatic) resources, a semantic-driven graphic environment for defining and monitoring ubiquitous workflows and an intelligent agent-based technology for their distributed execution allows UBioLab to be a semantic guide for bioinformaticians and biologists providing (i) a flexible environment for visualizing, organizing and inferring any (semantics and computational) "type" of domain knowledge (e.g., resources and activities, expressed in a declarative form), (ii) a powerful engine for defining and storing semantic-driven ubiquitous in-silico experiments on the domain hyperspace, as well as (iii) a transparent, automatic and distributed environment for correct experiment executions.


Subject(s)
Computational Biology/methods , Internet , Laboratories , Software , Databases, Protein
7.
Adv Physiol Educ ; 35(4): 427-37, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22139782

ABSTRACT

As part of a 3-wk intersession workshop funded by a National Science Foundation Expeditions in Computing award, 15 undergraduate students from the City University of New York(1) collaborated on a study aimed at characterizing the voltage dynamics and arrhythmogenic behavior of cardiac cells for a broad range of physiologically relevant conditions using an in silico model. The primary goal of the workshop was to cultivate student interest in computational modeling and analysis of complex systems by introducing them through lectures and laboratory activities to current research in cardiac modeling and by engaging them in a hands-on research experience. The success of the workshop lay in the exposure of the students to active researchers and experts in their fields, the use of hands-on activities to communicate important concepts, active engagement of the students in research, and explanations of the significance of results as the students generated them. The workshop content addressed how spiral waves of electrical activity are initiated in the heart and how different parameter values affect the dynamics of these reentrant waves. Spiral waves are clinically associated with tachycardia, when the waves remain stable, and with fibrillation, when the waves exhibit breakup. All in silico experiments were conducted by simulating a mathematical model of cardiac cells on graphics processing units instead of the standard central processing units of desktop computers. This approach decreased the run time for each simulation to almost real time, thereby allowing the students to quickly analyze and characterize the simulated arrhythmias. Results from these simulations, as well as some of the background and methodology taught during the workshop, is presented in this article along with the programming code and the explanations of simulation results in an effort to allow other teachers and students to perform their own demonstrations, simulations, and studies.


Subject(s)
Arrhythmias, Cardiac/physiopathology , Computer Graphics , Computer Simulation , Electrophysiologic Techniques, Cardiac , Heart Conduction System/physiopathology , Models, Cardiovascular , Physiology/education , Teaching/methods , Arrhythmias, Cardiac/diagnosis , Comprehension , Electronic Data Processing , Feedback , Humans , Learning , Surveys and Questionnaires , Time Factors
8.
BMC Bioinformatics ; 9 Suppl 2: S3, 2008 Mar 26.
Article in English | MEDLINE | ID: mdl-18387205

ABSTRACT

BACKGROUND: Brain, heart and skeletal muscle share similar properties of excitable tissue, featuring both discrete behavior (all-or-nothing response to electrical activation) and continuous behavior (recovery to rest follows a temporal path, determined by multiple competing ion flows). Classical mathematical models of excitable cells involve complex systems of nonlinear differential equations. Such models not only impair formal analysis but also impose high computational demands on simulations, especially in large-scale 2-D and 3-D cell networks. In this paper, we show that by choosing Hybrid Automata as the modeling formalism, it is possible to construct a more abstract model of excitable cells that preserves the properties of interest while reducing the computational effort, thereby admitting the possibility of formal analysis and efficient simulation. RESULTS: We have developed CellExcite, a sophisticated simulation environment for excitable-cell networks. CellExcite allows the user to sketch a tissue of excitable cells, plan the stimuli to be applied during simulation, and customize the diffusion model. CellExcite adopts Hybrid Automata (HA) as the computational model in order to efficiently capture both discrete and continuous excitable-cell behavior. CONCLUSIONS: The CellExcite simulation framework for multicellular HA arrays exhibits significantly improved computational efficiency in large-scale simulations, thus opening the possibility for formal analysis based on HA theory. A demo of CellExcite is available at http://www.cs.sunysb.edu/~eha/.


Subject(s)
Action Potentials/physiology , Heart Conduction System/physiology , Models, Biological , Myocytes, Cardiac/physiology , Nerve Net/physiology , Neurons/physiology , Software , Algorithms , Animals , Computer Simulation , Humans , User-Computer Interface
9.
IEEE Trans Nanobioscience ; 6(2): 142-8, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17695749

ABSTRACT

Due to the huge volume and complexity of biological data available today, a fundamental component of biomedical research is now in silico analysis. This includes modelling and simulation of biological systems and processes, as well as automated bioinformatics analysis of high-throughput data. The quest for bioinformatics resources (including databases, tools, and knowledge) becomes therefore of extreme importance. Bioinformatics itself is in rapid evolution and dedicated Grid cyberinfrastructures already offer easier access and sharing of resources. Furthermore, the concept of the Grid is progressively interleaving with those of Web Services, semantics, and software agents. Agent-based systems can play a key role in learning, planning, interaction, and coordination. Agents constitute also a natural paradigm to engineer simulations of complex systems like the molecular ones. We present here an agent-based, multilayer architecture for bioinformatics Grids. It is intended to support both the execution of complex in silico experiments and the simulation of biological systems. In the architecture a pivotal role is assigned to an "alive" semantic index of resources, which is also expected to facilitate users' awareness of the bioinformatics domain.


Subject(s)
Computational Biology/methods , Database Management Systems , Databases, Factual , Information Storage and Retrieval/methods , Internet , Molecular Biology/methods , User-Computer Interface
10.
BMC Bioinformatics ; 8 Suppl 1: S19, 2007 Mar 08.
Article in English | MEDLINE | ID: mdl-17430563

ABSTRACT

BACKGROUND: The huge amount of biological information, its distribution over the Internet and the heterogeneity of available software tools makes the adoption of new data integration and analysis network tools a necessity in bioinformatics. ICT standards and tools, like Web Services and Workflow Management Systems (WMS), can support the creation and deployment of such systems. Many Web Services are already available and some WMS have been proposed. They assume that researchers know which bioinformatics resources can be reached through a programmatic interface and that they are skilled in programming and building workflows. Therefore, they are not viable to the majority of unskilled researchers. A portal enabling these to take profit from new technologies is still missing. RESULTS: We designed biowep, a web based client application that allows for the selection and execution of a set of predefined workflows. The system is available on-line. Biowep architecture includes a Workflow Manager, a User Interface and a Workflow Executor. The task of the Workflow Manager is the creation and annotation of workflows. These can be created by using either the Taverna Workbench or BioWMS. Enactment of workflows is carried out by FreeFluo for Taverna workflows and by BioAgent/Hermes, a mobile agent-based middleware, for BioWMS ones. Main workflows' processing steps are annotated on the basis of their input and output, elaboration type and application domain by using a classification of bioinformatics data and tasks. The interface supports users authentication and profiling. Workflows can be selected on the basis of users' profiles and can be searched through their annotations. Results can be saved. CONCLUSION: We developed a web system that support the selection and execution of predefined workflows, thus simplifying access for all researchers. The implementation of Web Services allowing specialized software to interact with an exhaustive set of biomedical databases and analysis software and the creation of effective workflows can significantly improve automation of in-silico analysis. Biowep is available for interested researchers as a reference portal. They are invited to submit their workflows to the workflow repository. Biowep is further being developed in the sphere of the Laboratory of Interdisciplinary Technologies in Bioinformatics - LITBIO.


Subject(s)
Algorithms , Computational Biology/methods , Database Management Systems , Databases, Factual , Information Storage and Retrieval/methods , Software , User-Computer Interface , Computer Graphics , Systems Integration
11.
BMC Bioinformatics ; 8 Suppl 1: S2, 2007 Mar 08.
Article in English | MEDLINE | ID: mdl-17430564

ABSTRACT

BACKGROUND: An in-silico experiment can be naturally specified as a workflow of activities implementing, in a standardized environment, the process of data and control analysis. A workflow has the advantage to be reproducible, traceable and compositional by reusing other workflows. In order to support the daily work of a bioscientist, several Workflow Management Systems (WMSs) have been proposed in bioinformatics. Generally, these systems centralize the workflow enactment and do not exploit standard process definition languages to describe, in order to be reusable, workflows. While almost all WMSs require heavy stand-alone applications to specify new workflows, only few of them provide a web-based process definition tool. RESULTS: We have developed BioWMS, a Workflow Management System that supports, through a web-based interface, the definition, the execution and the results management of an in-silico experiment. BioWMS has been implemented over an agent-based middleware. It dynamically generates, from a user workflow specification, a domain-specific, agent-based workflow engine. Our approach exploits the proactiveness and mobility of the agent-based technology to embed, inside agents behaviour, the application domain features. Agents are workflow executors and the resulting workflow engine is a multiagent system - a distributed, concurrent system--typically open, flexible, and adaptative. A demo is available at http://litbio.unicam.it:8080/biowms. CONCLUSION: BioWMS, supported by Hermes mobile computing middleware, guarantees the flexibility, scalability and fault tolerance required to a workflow enactment over distributed and heterogeneous environment. BioWMS is funded by the FIRB project LITBIO (Laboratory for Interdisciplinary Technologies in Bioinformatics).


Subject(s)
Computational Biology/methods , Database Management Systems , Information Storage and Retrieval/methods , Internet , Sequence Analysis/methods , Software , User-Computer Interface , Computer Graphics
12.
Genome Biol ; 4(11): R77, 2003.
Article in English | MEDLINE | ID: mdl-14611663

ABSTRACT

We present here a software tool for combined visualization of gene-expression data and quantitative trait loci (QTL). The application is implemented as an extension to the Ensembl project and caters for a direct transition from microarray experiments of gene or protein expression levels to the genomic context of individual genes and QTL. It supports the visualization of gene clusters and the selection of functional candidate genes in the context of research on complex traits.


Subject(s)
Gene Expression/genetics , Quantitative Trait Loci/genetics , Software , Animals , Chromosome Mapping , Chromosomes, Mammalian/genetics , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...