Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
1.
Nat Commun ; 15(1): 1858, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38424075

ABSTRACT

Ferromagnetism is the collective alignment of atomic spins that retain a net magnetic moment below the Curie temperature, even in the absence of external magnetic fields. Reducing this fundamental property into strictly two-dimensions was proposed in metal-organic coordination networks, but thus far has eluded experimental realization. In this work, we demonstrate that extended, cooperative ferromagnetism is feasible in an atomically thin two-dimensional metal-organic coordination network, despite only ≈ 5% of the monolayer being composed of Fe atoms. The resulting ferromagnetic state exhibits an out-of-plane easy-axis square-like hysteresis loop with large coercive fields over 2 Tesla, significant magnetic anisotropy, and persists up to TC ≈ 35 K. These properties are driven by exchange interactions mainly mediated by the molecular linkers. Our findings resolve a two decade search for ferromagnetism in two-dimensional metal-organic coordination networks.

3.
Antioxidants (Basel) ; 12(3)2023 Feb 25.
Article in English | MEDLINE | ID: mdl-36978829

ABSTRACT

Loss-of-function (LOF) mutations in GRN gene, which encodes progranulin (PGRN), cause frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP). FTLD-TDP is one of the most common forms of early onset dementia, but its pathogenesis is not fully understood. Mitochondrial dysfunction has been associated with several neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS). Here, we have investigated whether mitochondrial alterations could also contribute to the pathogenesis of PGRN deficiency-associated FTLD-TDP. Our results showed that PGRN deficiency induced mitochondrial depolarization, increased ROS production and lowered ATP levels in GRN KD SH-SY5Y neuroblastoma cells. Interestingly, lymphoblasts from FTLD-TDP patients carrying a LOF mutation in the GRN gene (c.709-1G > A) also demonstrated mitochondrial depolarization and lower ATP levels. Such mitochondrial damage increased mitochondrial fission to remove dysfunctional mitochondria by mitophagy. Interestingly, PGRN-deficient cells showed elevated mitochondrial mass together with autophagy dysfunction, implying that PGRN deficiency induced the accumulation of damaged mitochondria by blocking its degradation in the lysosomes. Importantly, the treatment with two brain-penetrant CK-1δ inhibitors (IGS-2.7 and IGS-3.27), known for preventing the phosphorylation and cytosolic accumulation of TDP-43, rescued mitochondrial function in PGRN-deficient cells. Taken together, these results suggest that mitochondrial function is impaired in FTLD-TDP associated with LOF GRN mutations and that the TDP-43 pathology linked to PGRN deficiency might be a key mechanism contributing to such mitochondrial dysfunction. Furthermore, our results point to the use of drugs targeting TDP-43 pathology as a promising therapeutic strategy for restoring mitochondrial function in FTLD-TDP and other TDP-43-related diseases.

4.
Int J Mol Sci ; 24(2)2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36674978

ABSTRACT

Parkinson's disease (PD) is a neurodegenerative disorder that results from the degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Since there are only symptomatic treatments available, new cellular and molecular targets involved in the onset and progression of this disease are needed to develop effective treatments. CCAAT/Enhancer Binding Protein ß (C/EBPß) transcription factor levels are altered in patients with a variety of neurodegenerative diseases, suggesting that it may be a good therapeutic target for the treatment of PD. A list of genes involved in PD that can be regulated by C/EBPß was generated by the combination of genetic and in silico data, the mitochondrial transcription factor A (TFAM) being among them. In this paper, we observed that C/EBPß overexpression increased TFAM promoter activity. However, downregulation of C/EBPß in different PD/neuroinflammation cellular models produced an increase in TFAM levels, together with other mitochondrial markers. This led us to propose an accumulation of non-functional mitochondria possibly due to the alteration of their autophagic degradation in the absence of C/EBPß. Then, we concluded that C/EBPß is not only involved in harmful processes occurring in PD, such as inflammation, but is also implicated in mitochondrial function and autophagy in PD-like conditions.


Subject(s)
Neurodegenerative Diseases , Parkinson Disease , Humans , Parkinson Disease/genetics , Parkinson Disease/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Pars Compacta/metabolism , Dopaminergic Neurons/metabolism , Neurodegenerative Diseases/metabolism , Autophagy/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism
5.
J Enzyme Inhib Med Chem ; 37(1): 2348-2356, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36050834

ABSTRACT

Multitarget drugs are a promising therapeutic approach against Alzheimer's disease. In this work, a new family of 5-substituted indazole derivatives with a multitarget profile including cholinesterase and BACE1 inhibition is described. Thus, the synthesis and evaluation of a new class of 5-substituted indazoles has been performed. Pharmacological evaluation includes in vitro inhibitory assays on AChE/BuChE and BACE1 enzymes. Also, the corresponding competition studies on BuChE were carried out. Additionally, antioxidant properties have been calculated from ORAC assays. Furthermore, studies of anti-inflammatory properties on Raw 264.7 cells and neuroprotective effects in human neuroblastoma SH-SY5Y cells have been performed. The results of pharmacological tests have shown that some of these 5-substituted indazole derivatives 1-4 and 6 behave as AChE/BuChE and BACE1 inhibitors, simultaneously. In addition, some indazole derivatives showed anti-inflammatory (3, 6) and neuroprotective (1-4 and 6) effects against Aß-induced cell death in human neuroblastoma SH-SY5Y cells with antioxidant properties.


Subject(s)
Alzheimer Disease , Neuroblastoma , Neuroprotective Agents , Acetylcholinesterase/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Amyloid Precursor Protein Secretases/metabolism , Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Antioxidants/therapeutic use , Aspartic Acid Endopeptidases/metabolism , Cholinesterase Inhibitors , Humans , Indazoles/pharmacology , Neuroblastoma/drug therapy , Structure-Activity Relationship
6.
Antioxidants (Basel) ; 11(8)2022 Jul 22.
Article in English | MEDLINE | ID: mdl-35892623

ABSTRACT

Oxidative stress (OS) is the result of an imbalance between the production of reactive oxygen species (ROS) and the antioxidant capacity of cells. Due to its high oxygen demand, the human brain is highly susceptible to OS and, thus, it is not a surprise that OS has emerged as an essential component of the pathophysiology of several neurodegenerative diseases, including tauopathies. Tauopathies are a heterogeneous group of age-related neurodegenerative disorders characterized by the deposition of abnormal tau protein in the affected neurons. With the worldwide population aging, the prevalence of tauopathies is increasing, but effective therapies have not yet been developed. Since OS seems to play a key role in tauopathies, it has been proposed that the use of antioxidants might be beneficial for tau-related neurodegenerative diseases. Although antioxidant therapies looked promising in preclinical studies performed in cellular and animal models, the antioxidant clinical trials performed in tauopathy patients have been disappointing. To develop effective antioxidant therapies, the molecular mechanisms underlying OS in tauopathies should be completely understood. Here, we review the link between OS and tauopathies, emphasizing the causes of OS in these diseases and the role of OS in tau pathogenesis. We also summarize the antioxidant therapies proposed as a potential treatment for tauopathies and discuss why they have not been completely translated to clinical trials. This review aims to provide an integrated perspective of the role of OS and antioxidant therapies in tauopathies. In doing so, we hope to enable a more comprehensive understanding of OS in tauopathies that will positively impact future studies.

7.
J Am Chem Soc ; 144(27): 12520-12535, 2022 Jul 13.
Article in English | MEDLINE | ID: mdl-35759747

ABSTRACT

The molecular wheel [Cr10(OMe)20(O2CCMe3)10], abbreviated {Cr10}, with an unusual intermediate total spin S = 9 and non-negligible cluster anisotropy, D/kB = -0.045(2) K, is a rare case among wheels based on an even number of 3d-metals, which usually present an antiferromagnetic (AF) ground state (S = 0). Herein, we unveil the origin of such a behavior. Angular magnetometry measurements performed on a single crystal confirmed the axial anisotropic behavior of {Cr10}. For powder samples, the temperature dependence of the susceptibility plotted as χT(T) showed an overall ferromagnetic (FM) behavior down to 1.8 K, whereas the magnetization curve M(H) did not saturate at the expected 30 µB/fu for 10 FM coupled 3/2 spin Cr3+ ions, but to a much lower value, corresponding to S = 9. In addition, the X-ray magnetic circular dichroism (XMCD) measured at high magnetic field (170 kOe) and 7.5 K showed the polarization of the cluster moment up to 23 µB/fu. The magnetic results can be rationalized within a model, including the cluster anisotropy, in which the {Cr10} wheel is formed by two semiwheels, each with four Cr3+ spins FM coupled (JFM/kB = 2.0 K), separated by two Cr3+ ions AF coupled asymmetrically (J23/kB = J78/kB = -2.0 K; J34/kB = J89/kB = -0.25 K). Inelastic neutron scattering and heat capacity allowed us to confirm this model leading to the S = 9 ground state and first excited S = 8. Single-molecule magnet behavior with an activation energy of U/kB = 4.0(5) K in the absence of applied field was observed through ac susceptibility measurements down to 0.1 K. The intriguing magnetic behavior of {Cr10} arises from the detailed asymmetry in the molecule interactions produced by small-angle distortions in the angles of the Cr-O-Cr alkoxy bridges coupling the Cr3+ ions, as demonstrated by ab initio and density functional theory calculations, while the cluster anisotropy can be correlated to the single-ion anisotropies calculated for each Cr3+ ion in the wheel.

8.
Sci Rep ; 12(1): 10092, 2022 06 16.
Article in English | MEDLINE | ID: mdl-35710783

ABSTRACT

The most accepted hypothesis in Alzheimer's disease (AD) is the amyloid cascade which establishes that Aß accumulation may induce the disease development. This accumulation may occur years before the clinical symptoms but it has not been elucidated if this accumulation is the cause or the consequence of AD. It is however, clear that Aß accumulation exerts toxic effects in the cerebral cells. It is important then to investigate all possible associated events that may help to design new therapeutic strategies to defeat or ameliorate the symptoms in AD. Alterations in the mitochondrial physiology have been found in AD but it is not still clear if they could be an early event in the disease progression associated to amyloidosis or other conditions. Using APP/PS1 mice, our results support published evidence and show imbalances in the mitochondrial dynamics in the cerebral cortex and hippocampus of these mice representing very early events in the disease progression. We demonstrate in cellular models that these imbalances are consequence of Aß accumulation that ultimately induce increased mitophagy, a mechanism which selectively removes damaged mitochondria by autophagy. Along with increased mitophagy, we also found that Aß independently increases autophagy in APP/PS1 mice. Therefore, mitochondrial dysfunction could be an early feature in AD, associated with amyloid overload.


Subject(s)
Alzheimer Disease , Amyloidosis , Amyloid , Amyloid beta-Peptides , Amyloid beta-Protein Precursor/genetics , Animals , Autophagy , Disease Models, Animal , Disease Progression , Mice , Mice, Transgenic , Mitochondrial Dynamics , Models, Theoretical
9.
Front Immunol ; 13: 878201, 2022.
Article in English | MEDLINE | ID: mdl-35547737

ABSTRACT

Coronavirus 2 (SARS-CoV2) (COVID-19) causes severe acute respiratory syndrome. Severe illness of COVID-19 largely occurs in older people and recent evidence indicates that demented patients have higher risk for COVID-19. Additionally, COVID-19 further enhances the vulnerability of older adults with cognitive damage. A balance between the immune and inflammatory response is necessary to control the infection. Thus, antimicrobial and anti-inflammatory drugs are hopeful therapeutic agents for the treatment of COVID-19. Accumulating evidence suggests that lactoferrin (Lf) is active against SARS-CoV-2, likely due to its potent antiviral and anti-inflammatory actions that ultimately improves immune system responses. Remarkably, salivary Lf levels are significantly reduced in different Alzheimer's disease (AD) stages, which may reflect AD-related immunological disturbances, leading to reduced defense mechanisms against viral pathogens and an increase of the COVID-19 susceptibility. Overall, there is an urgent necessity to protect AD patients against COVID-19, decreasing the risk of viral infections. In this context, we propose bovine Lf (bLf) as a promising preventive therapeutic tool to minimize COVID-19 risk in patients with dementia or AD.


Subject(s)
Alzheimer Disease , COVID-19 Drug Treatment , COVID-19 , Aged , Alzheimer Disease/complications , Animals , Anti-Inflammatory Agents , COVID-19/complications , Cattle , Humans , Lactoferrin/therapeutic use , SARS-CoV-2
10.
Int J Mol Sci ; 23(8)2022 Apr 11.
Article in English | MEDLINE | ID: mdl-35457051

ABSTRACT

In the last few years, the SORL1 gene has been strongly implicated in the development of Alzheimer's disease (AD). We performed whole-exome sequencing on 37 patients with early-onset dementia or family history suggestive of autosomal dominant dementia. Data analysis was based on a custom panel that included 46 genes related to AD and dementia. SORL1 variants were present in a high proportion of patients with candidate variants (15%, 3/20). We expand the clinical manifestations associated with the SORL1 gene by reporting detailed clinical and neuroimaging findings of six unrelated patients with AD and SORL1 mutations. We also present for the first time a patient with the homozygous truncating variant c.364C>T (p.R122*) in SORL1, who also had severe cerebral amyloid angiopathy. Furthermore, we report neuropathological findings and immunochemistry assays from one patient with the splicing variant c.4519+5G>A in the SORL1 gene, in which AD was confirmed by neuropathological examination. Our results highlight the heterogeneity of clinical presentation and familial dementia background of SORL1-associated AD and suggest that SORL1 might be contributing to AD development as a risk factor gene rather than as a major autosomal dominant gene.


Subject(s)
Alzheimer Disease , Dementia , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Genetic Predisposition to Disease , Humans , LDL-Receptor Related Proteins/genetics , Membrane Transport Proteins/genetics , Neuroimaging
11.
Front Immunol ; 12: 749468, 2021.
Article in English | MEDLINE | ID: mdl-34659251

ABSTRACT

In the last few years, microbial infection and innate immune theories have been proposed as an alternative approach explaining the etiopathogenesis and origin of Alzheimer's disease (AD). Lactoferrin, one of the main antimicrobial proteins in saliva, is an important modulator of immune response and inflammation, and represents an important defensive element by inducing a broad spectrum of antimicrobial effects against microbial infections. We demonstrated that lactoferrin levels in saliva are decreased in prodromal and dementia stages of AD compared with healthy subjects. That finding seems to be specific to cerebral amyloid-ß (Aß) load as such observation was not observed in healthy elderly controls or those subjects with frontotemporal dementia. In the present study, we analysed salivary lactoferrin levels in a mouse model of AD. We observed robust and early reduction of lactoferrin levels in saliva from 6- and 12-month-old APP/PS1 mice. Because saliva is secreted by salivary glands, we presume that deregulation in salivary glands resulting in reduced salivary lactoferrin levels may occur in AD. To test this hypothesis, we collected submandibular glands from APP/PS1 mice, as well as submandibular gland tissue from AD patients and we analysed the expression levels of key components of the salivary protein signalling pathway. A significant reduction in M3 receptor levels was found along with decreased acetylcholine (Ach) levels in submandibular glands from APP/PS1 mice. Similarly, a reduction in M3 receptor levels was observed in human submandibular glands from AD patients but in that case, the Ach levels were found increased. Our data suggest that the ACh-mediated M3 signalling pathway is impaired in salivary glands in AD, resulting in salivary gland dysfunction and reduced salivary lactoferrin secretion.


Subject(s)
Acetylcholine/metabolism , Alzheimer Disease/metabolism , Lactoferrin/metabolism , Receptor, Muscarinic M3/metabolism , Saliva/metabolism , Salivary Glands/metabolism , Aged , Aged, 80 and over , Animals , Disease Models, Animal , Female , Humans , Male , Mice, Transgenic , Middle Aged
12.
Biomedicines ; 9(9)2021 Aug 27.
Article in English | MEDLINE | ID: mdl-34572280

ABSTRACT

Neuroinflammation is a common feature in Alzheimer's (AD) and Parkinson's (PD) disease. In the last few decades, a testable hypothesis was proposed that protein-unfolding events might occur due to neuroinflammatory cascades involving alterations in the crosstalk between glial cells and neurons. Here, we tried to clarify the pattern of two of the most promising biomarkers of neuroinflammation in cerebrospinal fluid (CSF) in AD and PD. This study included cognitively unimpaired elderly patients, patients with mild cognitive impairment, patients with AD dementia, and patients with PD. CSF samples were analyzed for YKL-40 and C-reactive protein (CRP). We found that CSF YKL-40 levels were significantly increased only in dementia stages of AD. Additionally, increased YKL-40 levels were found in the cerebral orbitofrontal cortex from AD patients in agreement with augmented astrogliosis. Our study confirms that these biomarkers of neuroinflammation are differently detected in CSF from AD and PD patients.

13.
Angew Chem Int Ed Engl ; 60(35): 19344-19354, 2021 08 23.
Article in English | MEDLINE | ID: mdl-34169618

ABSTRACT

Multitarget directed ligands (MTDLs) are arising as promising tools to tackle complex diseases. The main goal of this work is to create powerful modulating agents for neurodegenerative disorders. To achieve this aim, we have combined fragments that inhibit key protein kinases involved in the main pathomolecular pathways of Alzheimer's disease (AD) such as tau aggregation, neuroinflammation and decreased neurogenesis, whilst looking for a third action in beta-secretase (BACE1), responsible of ß-amyloid production. We obtained well-balanced MTDLs with in vitro activity in three different relevant targets and efficacy in two cellular models of AD. Furthermore, computational studies confirmed how these compounds accommodate adequately into the long and rather narrow BACE1 catalytic site. Finally, we employed in situ click chemistry using BACE1 as protein template as a versatile synthetic tool that allowed us to obtain further MTDLs.


Subject(s)
Alzheimer Disease/drug therapy , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Aspartic Acid Endopeptidases/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Neuroprotective Agents/pharmacology , Triazoles/pharmacology , Alzheimer Disease/metabolism , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Peptides/antagonists & inhibitors , Amyloid beta-Peptides/metabolism , Aspartic Acid Endopeptidases/metabolism , Cell Line , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Ligands , Molecular Structure , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/chemistry , Triazoles/chemical synthesis , Triazoles/chemistry
14.
Alzheimers Dement (Amst) ; 13(1): e12173, 2021.
Article in English | MEDLINE | ID: mdl-33969170

ABSTRACT

The search for new, robust, and reproducible biomarkers for Alzheimer's disease (AD) diagnosis is a challenge. We recently reported that salivary lactoferrin (Lf) could be presented as new biomarker candidate for AD, being both non-invasive and cost-effective, as well as having appropriate diagnostic performance for the clinical detection of AD subjects. Saliva is an attractive sample type for biomarker-based testing approaches for several other diseases; however, its composition may change under certain circumstances. It is therefore critical to maintain a consistent salivary handling protocol, considering possible extrinsic factors that may influence salivary Lf concentration. In this work, we analyzed salivary Lf concentration under different handling conditions and donor-dependent factors including age, inter-diurnal variations, physical activity, and pharmacological treatments. Our aim was to evaluate the influence of such conditions on salivary Lf concentration. In conclusion, we found that most of these extrinsic factors should be considered in the future when using Lf as a predictive biomarker for AD.

15.
Nanoscale ; 13(10): 5216-5223, 2021 Mar 18.
Article in English | MEDLINE | ID: mdl-33661272

ABSTRACT

Recently, mixed honeycomb-kagome lattices featuring metal-organic networks have been theoretically proposed as topological insulator materials capable of hosting nontrivial edge states. This new family of so-called "organic topological insulators" are purely two-dimensional and combine polyaromatic-flat molecules with metal adatoms. However, their experimental validation is still pending given the generalized absence of edge states. Here, we generate one such proposed network on a Cu(111) substrate and study its morphology and electronic structure with the purpose of confirming its topological properties. The structural techniques reveal a practically flawless network that results in a kagome network multi-band observed by angle-resolved photoemission spectroscopy and scanning tunneling spectroscopy. However, at the network island borders we notice the absence of edge states. Bond-resolved imaging of the network exhibits an unexpected structural symmetry alteration that explains such disappearance. This collective lifting of the network symmetry could be more general than initially expected and provide a simple explanation for the recurrent experimental absence of edge states in predicted organic topological insulators.

16.
Sci Rep ; 10(1): 9391, 2020 06 10.
Article in English | MEDLINE | ID: mdl-32523019

ABSTRACT

In Alzheimer's disease (AD) amyloid-ß (Aß) deposits may cause impairments in choroid plexus, a specialised brain structure which forms the blood-cerebrospinal fluid (CSF) barrier. We previously carried out a mass proteomic-based study in choroid plexus from AD patients and we found several differentially regulated proteins compared with healthy subjects. One of these proteins, annexin A5, was previously demonstrated implicated in blocking Aß-induced cytotoxicity in neuronal cell cultures. Here, we investigated the effects of annexin A5 on Aß toxicity in choroid plexus. We used choroid plexus tissue samples and CSF from mild cognitive impairment (MCI) and AD patients to analyse Aß accumulation, cell death and annexin A5 levels compared with control subjects. Choroid plexus cell cultures from rats were used to analyse annexin A5 effects on Aß-induced cytotoxicity. AD choroid plexus exhibited progressive reduction of annexin A5 levels along with progressive increased Aß accumulation and cell death as disease stage was higher. On the other hand, annexin A5 levels in CSF from patients were found progressively increased as the disease stage increased in severity. In choroid plexus primary cultures, Aß administration reduced endogenous annexin A5 levels in a time-course dependent manner and simultaneously increased annexin A5 levels in extracellular medium. Annexin A5 addition to choroid plexus cell cultures restored the Aß-induced impairments on autophagy flux and apoptosis in a calcium-dependent manner. We propose that annexin A5 would exert a protective role in choroid plexus and this protection is lost as Aß accumulates with the disease progression. Then, brain protection against further toxic insults would be jeopardised.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Annexin A5/metabolism , Blood-Brain Barrier/pathology , Choroid Plexus/physiology , Cognitive Dysfunction/metabolism , Neurons/pathology , Aged , Aged, 80 and over , Alzheimer Disease/genetics , Animals , Apoptosis , Autophagy , Calcium/metabolism , Cells, Cultured , Cognitive Dysfunction/genetics , Female , Humans , Male , Middle Aged , Proteomics , Rats , Rats, Wistar
17.
EBioMedicine ; 57: 102834, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32586758

ABSTRACT

BACKGROUND: Evidences of infectious pathogens in Alzheimer's disease (AD) brains may suggest a deteriorated innate immune system in AD pathophysiology. We previously demonstrated reduced salivary lactoferrin (Lf) levels, one of the major antimicrobial proteins, in AD patients. METHODS: To assess the clinical utility of salivary Lf for AD diagnosis, we examine the relationship between salivary Lf and cerebral amyloid-ß (Aß) load using amyloid-Positron-Emission Tomography (PET) neuroimaging, in two different cross-sectional cohorts including patients with different neurodegenerative disorders. FINDINGS: The diagnostic performance of salivary Lf in the cohort 1 had an area under the curve [AUC] of 0•95 (0•911-0•992) for the differentiation of the prodromal AD/AD group positive for amyloid-PET (PET+) versus healthy group, and 0•97 (0•924-1) versus the frontotemporal dementia (FTD) group. In the cohort 2, salivary Lf had also an excellent diagnostic performance in the health control group versus prodromal AD comparison: AUC 0•93 (0•876-0•989). Salivary Lf detected prodromal AD and AD dementia distinguishing them from FTD with over 87% sensitivity and 91% specificity. INTERPRETATION: Salivary Lf seems to have a very good diagnostic performance to detect AD. Our findings support the possible utility of salivary Lf as a new non-invasive and cost-effective AD biomarker. FUNDING: Instituto de Salud Carlos III (FIS15/00780, FIS18/00118), FEDER, Comunidad de Madrid (S2017/BMD-3700; NEUROMETAB-CM), and CIBERNED (PI2016/01) to E.C.; Spanish Ministry of Economy and Competitiveness (SAF2017-85310-R) to J.L.C., and (PSI2017-85311-P) to M.A.; International Centre on ageing CENIE-POCTEP (0348_CIE_6_E) to M.A.; Instituto de Salud Carlos III (PIE16/00021, PI17/01799), to H.B.


Subject(s)
Alzheimer Disease/diagnosis , Cognitive Dysfunction/genetics , Lactoferrin/genetics , Salivary Glands/metabolism , Aged , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/metabolism , Biomarkers/metabolism , Brain/diagnostic imaging , Brain/metabolism , Cognitive Dysfunction/pathology , Female , Humans , Immunity, Innate/genetics , Lactoferrin/metabolism , Male , Middle Aged , Neuroimaging/methods , Positron-Emission Tomography/methods , Tomography, X-Ray Computed , tau Proteins/genetics
18.
Alzheimers Dement ; 16(8): 1196-1204, 2020 08.
Article in English | MEDLINE | ID: mdl-32543760

ABSTRACT

OBJECTIVE: We aim to explain why salivary lactoferrin (Lf) levels are reduced in patients suffering mild cognitive impairment (MCI) and sporadic Alzheimer's disease (sAD).1 We also will discuss if such Lf decrease could be due to a downregulation of the sAD associated systemic immunity. BACKGROUND: Several non-neurological alterations have been described in sAD, mainly in skin, blood cell, and immunological capacities. We reviewed briefly the main pathophysiological theories of sAD (amyloid cascade, tau, unfolder protein tau, and amyloid deposits) emphasizing the most brain based hypotheses such as the updated tau-related neuron skeletal hypothesis; we also comment on the systemic theories that emphasize the fetal origin of the complex disorders that include the low inflammatory and immunity theories of sAD. NEW/UPDATED HYPOTHESIS: Lf has important anti-infectious and immunomodulatory roles in health and disease. We present the hypothesis that the reduced levels of saliva Lf could be an effect of immunological disturbances associated to sAD. Under this scenario, two alternative pathways are possible: first, whether sAD could be a systemic disorder (or disorders) related to early immunological and low inflammatory alterations; second, if systemic immunity alterations of sAD manifestations could be downstream of early sAD brain affectations. MAJOR CHALLENGES FOR THE HYPOTHESIS: The major challenge of the Lf as early sAD biomarker would be its validation in other clinical and population-based studies. It is possible the decreased salivary Lf in early sAD could be related to immunological modulation actions, but other different unknown mechanisms could be the origin of such reduction. LINKAGE TO OTHER MAJOR THEORIES: This hypothesis is in agreement with two physiopathological explanations of the sAD as a downstream process determined by the early lesions of the hypothalamus and autonomic vegetative system (neurodegeneration), or as a consequence of low neuroinflammation and dysimmunity since the early life aggravated in the elderly (immunosenescence).


Subject(s)
Alzheimer Disease/diagnosis , Alzheimer Disease/immunology , Biomarkers/metabolism , Lactoferrin/metabolism , Brain/immunology , Brain/pathology , Humans , Lactoferrin/analysis , Saliva/chemistry
20.
Biomolecules ; 10(4)2020 04 08.
Article in English | MEDLINE | ID: mdl-32276479

ABSTRACT

Kynurenic acid (KYNA) is a product of the tryptophan (TRP) metabolism via the kynurenine pathway (KP). This pathway is activated in neurodegenerative disorders, such as Alzheimer´s disease (AD). KYNA is primarily produced by astrocytes and is considered neuroprotective. Thus, altered KYNA levels may suggest an inflammatory response. Very recently, significant increases in KYNA levels were reported in cerebrospinal fluid (CSF) from AD patients compared with normal controls. In this study, we assessed the accuracy of KYNA in CSF for the classification of patients with AD, cognitively healthy controls, and patients with a variety of other neurodegenerative diseases, including frontotemporal dementia (FTD), amyotrophic lateral sclerosis (ALS), and progressive supranuclear palsy (PSP). Averaged KYNA concentration in CSF was higher in patients with AD when compared with healthy subjects and with all the other differentially diagnosed groups. There were no significant differences in KYNA levels in CSF between any other neurodegenerative groups and controls. These results suggest a specific increase in KYNA concentration in CSF from AD patients not seen in other neurodegenerative diseases.


Subject(s)
Alzheimer Disease/cerebrospinal fluid , Kynurenic Acid/cerebrospinal fluid , Aged , Alzheimer Disease/metabolism , Case-Control Studies , Female , Humans , Kynurenic Acid/metabolism , Male , Middle Aged , Tryptophan/cerebrospinal fluid , Tryptophan/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...