Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
Add more filters










Publication year range
1.
Plant J ; 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38581375

ABSTRACT

Food security is threatened by climate change, with heat and drought being the main stresses affecting crop physiology and ecosystem services, such as plant-pollinator interactions. We hypothesize that tracking and ranking pollinators' preferences for flowers under environmental pressure could be used as a marker of plant quality for agricultural breeding to increase crop stress tolerance. Despite increasing relevance of flowers as the most stress sensitive organs, phenotyping platforms aim at identifying traits of resilience by assessing the plant physiological status through remote sensing-assisted vegetative indexes, but find strong bottlenecks in quantifying flower traits and in accurate genotype-to-phenotype prediction. However, as the transport of photoassimilates from leaves (sources) to flowers (sinks) is reduced in low-resilient plants, flowers are better indicators than leaves of plant well-being. Indeed, the chemical composition and amount of pollen and nectar that flowers produce, which ultimately serve as food resources for pollinators, change in response to environmental cues. Therefore, pollinators' preferences could be used as a measure of functional source-to-sink relationships for breeding decisions. To achieve this challenging goal, we propose to develop a pollinator-assisted phenotyping and selection platform for automated quantification of Genotype × Environment × Pollinator interactions through an insect geo-positioning system. Pollinator-assisted selection can be validated by metabolic, transcriptomic, and ionomic traits, and mapping of candidate genes, linking floral and leaf traits, pollinator preferences, plant resilience, and crop productivity. This radical new approach can change the current paradigm of plant phenotyping and find new paths for crop redomestication and breeding assisted by ecological decisions.

2.
Am Nat ; 203(4): 458-472, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38489780

ABSTRACT

AbstractEcologists increasingly recognize that interactions between two species can be affected by the density of a third species. How these higher-order interactions (HOIs) affect species persistence remains poorly understood. To explore the effect of HOIs stemming from multiple trophic layers on a plant community composition, we experimentally built a mesocosm with three plants and three pollinator species arranged in a fully nested and modified network structure. We estimated pairwise interactions among plants and between plants and pollinators, as well as HOIs initiated by a plant or a pollinator affecting plant species pairs. Using a structuralist approach, we evaluated the consequences of the statistically supported HOIs on the persistence probability of each of the three competing plant species and their combinations. HOIs substantially redistribute the strength and sign of pairwise interactions between plant species, promoting the opportunities for multispecies communities to persist compared with a non-HOI scenario. However, the physical elimination of a plant-pollinator link in the modified network structure promotes changes in per capita pairwise interactions and HOIs, resulting in a single-species community. Our study provides empirical evidence of the joint importance of HOIs and network structure in determining species persistence within diverse communities.


Subject(s)
Plants , Pollination
3.
Nat Ecol Evol ; 8(3): 423-429, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38302580

ABSTRACT

Despite clear evidence that some pollinator populations are declining, our ability to predict pollinator communities prone to collapse or species at risk of local extinction is remarkably poor. Here, we develop a model grounded in the structuralist approach that allows us to draw sound predictions regarding the temporal persistence of species in mutualistic networks. Using high-resolution data from a six-year study following 12 independent plant-pollinator communities, we confirm that pollinator species with more persistent populations in the field are theoretically predicted to tolerate a larger range of environmental changes. Persistent communities are not necessarily more diverse, but are generally located in larger habitat patches, and present a distinctive combination of generalist and specialist species resulting in a more nested structure, as predicted by previous theoretical work. Hence, pollinator interactions directly inform about their ability to persist, opening the door to use theoretically informed models to predict species' fate within the ongoing global change.


Subject(s)
Ecosystem , Pollination , Plants , Symbiosis
4.
Trends Ecol Evol ; 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38395670

ABSTRACT

Integrating biodiversity conservation into agriculture is a pressing challenge promoted by conservationists. Although biodiversity can also provide important benefits to farmers, the adoption of biodiversity-enhancing measures is lagging behind the scientific evidence. This may partially be related to the way scientists position themselves. If scientists do not convincingly communicate about the implications of their evidence, other interested stakeholders will drive the conversations. To increase societal impact, scientists must understand the complex communication environment and take an informed and strategic position. We describe the prevailing conservation and farming narratives, highlighting how the term 'biodiversity' can be used to start dialogues between parties with conflicting demands and exemplifying how scientists can build effective narratives.

5.
Biol Lett ; 19(11): 20230296, 2023 11.
Article in English | MEDLINE | ID: mdl-38016644

ABSTRACT

The rapid conversion of natural habitats to anthropogenic landscapes is threatening insect pollinators worldwide, raising concern regarding the negative consequences on their fundamental role as plant pollinators. However, not all pollinators are negatively affected by habitat conversion, as certain species find appropriate resources in anthropogenic landscapes to persist and proliferate. The reason why some species tolerate anthropogenic environments while most find them inhospitable remains poorly understood. The cognitive buffer hypothesis, widely supported in vertebrates but untested in insects, offers a potential explanation. This theory suggests that species with larger brains have enhanced behavioural plasticity, enabling them to confront and adapt to novel challenges. To investigate this hypothesis in insects, we measured brain size for 89 bee species, and evaluated their association with the degree of habitat occupancy. Our analyses revealed that bee species mainly found in urban habitats had larger brains relative to their body size than those that tend to occur in forested or agricultural habitats. Additionally, urban bees exhibited larger body sizes and, consequently, larger absolute brain sizes. Our results provide the first empirical support for the cognitive buffer hypothesis in invertebrates, suggesting that a large brain in bees could confer behavioural advantages to tolerate urban environments.


Subject(s)
Ecosystem , Forests , Animals , Bees , Organ Size , Insecta , Agriculture , Pollination
6.
Proc Natl Acad Sci U S A ; 120(28): e2212124120, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37399410

ABSTRACT

Agricultural expansion and intensification have boosted global food production but have come at the cost of environmental degradation and biodiversity loss. Biodiversity-friendly farming that boosts ecosystem services, such as pollination and natural pest control, is widely being advocated to maintain and improve agricultural productivity while safeguarding biodiversity. A vast body of evidence showing the agronomic benefits of enhanced ecosystem service delivery represent important incentives to adopt practices enhancing biodiversity. However, the costs of biodiversity-friendly management are rarely taken into account and may represent a major barrier impeding uptake by farmers. Whether and how biodiversity conservation, ecosystem service delivery, and farm profit can go hand in hand is unknown. Here, we quantify the ecological, agronomic, and net economic benefits of biodiversity-friendly farming in an intensive grassland-sunflower system in Southwest France. We found that reducing land-use intensity on agricultural grasslands drastically enhances flower availability and wild bee diversity, including rare species. Biodiversity-friendly management on grasslands furthermore resulted in an up to 17% higher revenue on neighboring sunflower fields through positive effects on pollination service delivery. However, the opportunity costs of reduced grassland forage yields consistently exceeded the economic benefits of enhanced sunflower pollination. Our results highlight that profitability is often a key constraint hampering adoption of biodiversity-based farming and uptake critically depends on society's willingness to pay for associated delivery of public goods such as biodiversity.


Subject(s)
Ecosystem , Pollination , Bees , Animals , Farms , Biodiversity , Agriculture/methods , Crops, Agricultural , Conservation of Natural Resources
7.
Ecol Lett ; 26(10): 1647-1662, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37515408

ABSTRACT

A universal feature of ecological systems is that species do not interact with others with the same sign and strength. Yet, the consequences of this asymmetry in biotic interactions for the short- and long-term persistence of individual species and entire communities remains unclear. Here, we develop a set of metrics to evaluate how asymmetric interactions among species translate to asymmetries in their individual vulnerability to extinction under changing environmental conditions. These metrics, which solve previous limitations of how to independently quantify the size from the shape of the so-called feasibility domain, provide rigorous advances to understand simultaneously why some species and communities present more opportunities to persist than others. We further demonstrate that our shape-related metrics are useful to predict short-term changes in species' relative abundances during 7 years in a Mediterranean grassland. Our approach is designed to be applied to any ecological system regardless of the number of species and type of interactions. With it, we show that is possible to obtain both mechanistic and predictive information on ecological persistence for individual species and entire communities, paving the way for a stronger integration of theoretical and empirical research.


Subject(s)
Ecosystem , Population Dynamics
8.
Ecol Lett ; 26(6): 831-842, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36972904

ABSTRACT

Theory posits that the persistence of species in ecological communities is shaped by their interactions within and across trophic guilds. However, we lack empirical evaluations of how the structure, strength and sign of biotic interactions drive the potential to coexist in diverse multi-trophic communities. Here, we model community feasibility domains, a theoretically informed measure of multi-species coexistence probability, from grassland communities comprising more than 45 species on average from three trophic guilds (plants, pollinators and herbivores). Contrary to our hypothesis, increasing community complexity, measured either as the number of guilds or community richness, did not decrease community feasibility. Rather, we observed that high degrees of species self-regulation and niche partitioning allow for maintaining larger levels of community feasibility and higher species persistence in more diverse communities. Our results show that biotic interactions within and across guilds are not random in nature and both structures significantly contribute to maintaining multi-trophic diversity.


Subject(s)
Biota , Nutritional Status , Herbivory , Ecosystem
9.
Environ Sci Technol ; 57(8): 3445-3454, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36780611

ABSTRACT

While wild pollinators play a key role in global food production, their assessment is currently missing from the most commonly used environmental impact assessment method, Life Cycle Assessment (LCA). This is mainly due to constraints in data availability and compatibility with LCA inventories. To target this gap, relative pollinator abundance estimates were obtained with the use of a Delphi assessment, during which 25 experts, covering 16 nationalities and 45 countries of expertise, provided scores for low, typical, and high expected abundance associated with 24 land use categories. Based on these estimates, this study presents a set of globally generic characterization factors (CFs) that allows translating land use into relative impacts to wild pollinator abundance. The associated uncertainty of the CFs is presented along with an illustrative case to demonstrate the applicability in LCA studies. The CFs based on estimates that reached consensus during the Delphi assessment are recommended as readily applicable and allow key differences among land use types to be distinguished. The resulting CFs are proposed as the first step for incorporating pollinator impacts in LCA studies, exemplifying the use of expert elicitation methods as a useful tool to fill data gaps that constrain the characterization of key environmental impacts.


Subject(s)
Conservation of Natural Resources , Animals , Conservation of Natural Resources/methods , Food , Life Cycle Stages
10.
Ecol Lett ; 26(3): 448-459, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36688287

ABSTRACT

Patterns of resource use observed at the species level emerge from the way individuals exploit the range of available resources. Hence, accounting for interindividual differences in resource use, such as pollinator use by plants, is essential to advance our understanding of community assembly and persistence. By using finely resolved data on plant-pollinator interactions, we evaluated how interindividual plant variation in pollinator use scales up to affect community structure and dynamics. All co-occurring plant species comprised specialists interacting with proper subsets of pollinators that visited generalists, and differences in interaction patterns were driven by among-individual trait variation. Furthermore, the nested structure and feasibility of plant-pollinator communities were maximised at higher levels of interindividual plant variation in traits and pollinator use. Our study sheds light on how pervasive properties of community structure arise from individual-level processes and contributes to elucidate the importance of preserving intraspecific variation in traits and resource use within populations.


Subject(s)
Plants , Pollination , Humans , Feasibility Studies , Symbiosis , Phenotype , Flowers
11.
J Anim Ecol ; 92(3): 760-773, 2023 03.
Article in English | MEDLINE | ID: mdl-36700304

ABSTRACT

Ecological processes leave distinct structural imprints on the species interactions that shape the topology of animal-plant mutualistic networks. Detecting how direct and indirect interactions between animals and plants are organised is not trivial since they go beyond pairwise interactions, but may get blurred when considering global network descriptors. Recent work has shown that the meso-scale, the intermediate level of network complexity between the species and the global network, can capture this important information. The meso-scale describes network subgraphs representing patterns of direct and indirect interactions between a small number of species, and when these network subgraphs differ statistically from a benchmark, they are often referred to as 'network motifs'. Although motifs can capture relevant ecological information of species interactions, they remain overlooked in natural plant-pollinator networks. By exploring 60 empirical plant-pollinator networks from 18 different studies with wide geographical coverage, we show that some network subgraphs are consistently under- or over-represented, suggesting the presence of worldwide network motifs in plant-pollinator networks. In addition, we found a higher proportion of densely connected network subgraphs that, based on previous findings, could reflect that species relative abundances are the main driver shaping the structure of the meso-scale on plant-pollinator communities. Moreover, we found that distinct subgraph positions describing species ecological roles (e.g. generalisation and number of indirect interactions) are occupied by different groups of animal and plant species representing their main life-history strategies (i.e. functional groups). For instance, we found that the functional group of 'bees' was over-represented in subgraph positions with a lower number of indirect interactions in contrast to the rest of floral visitors groups. Finally, we show that the observed functional group combinations within a subgraph cannot be retrieved from their expected probabilities (i.e. joint probability distributions), indicating that plant and floral visitor associations within subgraphs are not random either. Our results highlight the presence of common network motifs in plant-pollinator communities that are formed by a non-random association of plants and floral visitors functional groups.


Subject(s)
Flowers , Pollination , Animals , Geography , Plants
13.
Ecology ; 103(11): e3809, 2022 11.
Article in English | MEDLINE | ID: mdl-35792515

ABSTRACT

Reversing biodiversity declines requires a better understanding of organismal mobility, as movement processes dictate the scale at which species interact with the environment. Previous studies have demonstrated that species foraging ranges, and therefore, habitat use increases with body size. Yet, foraging ranges are also affected by other life-history traits, such as sociality, which influence the need of and ability to detect resources. We evaluated the effect of body size and sociality on potential and realized foraging ranges using a compiled dataset of 383 measurements for 81 bee species. Potential ranges were larger than realized ranges and increased more steeply with body size. Highly eusocial species had larger realized foraging ranges than primitively eusocial or solitary taxa. We contend that potential ranges describe species movement capabilities, whereas realized ranges depict how foraging movements result from interactions between species traits and environmental conditions. Furthermore, the complex communication strategies and large colony sizes in highly eusocial species may facilitate foraging over wider areas in response to resource depletion. Our findings should contribute to a greater understanding of landscape ecology and conservation, as traits that influence movement mediate species vulnerability to habitat loss and fragmentation.


Subject(s)
Appetitive Behavior , Bees , Body Size , Social Behavior , Animals , Bees/anatomy & histology , Bees/physiology , Biodiversity , Body Size/physiology , Ecology , Ecosystem , Appetitive Behavior/physiology
14.
Philos Trans R Soc Lond B Biol Sci ; 377(1853): 20210159, 2022 06 20.
Article in English | MEDLINE | ID: mdl-35491588

ABSTRACT

Pollination plays a central role in both crop production and maintaining biodiversity. However, habitat loss, pesticides, invasive species and larger environmental fluctuations are contributing to a dramatic decline of pollinators worldwide. Different management solutions require knowledge of how ecological communities will respond following interventions. Yet, anticipating the response of these systems to interventions remains extremely challenging due to the unpredictable nature of ecological communities, whose nonlinear behaviour depends on the specific details of species interactions and the various unknown or unmeasured confounding factors. Here, we propose that this knowledge can be derived by following a probabilistic systems analysis rooted on non-parametric causal inference. The main outcome of this analysis is to estimate the extent to which a hypothesized cause can increase or decrease the probability that a given effect happens without making assumptions about the form of the cause-effect relationship. We discuss a road map for how this analysis can be accomplished with the aim of increasing our system-level causative knowledge of natural communities. This article is part of the theme issue 'Natural processes influencing pollinator health: from chemistry to landscapes'.


Subject(s)
Biodiversity , Pollination , Biota , Crop Production , Ecosystem
15.
PLoS Comput Biol ; 17(12): e1008906, 2021 12.
Article in English | MEDLINE | ID: mdl-34871304

ABSTRACT

Prediction is one of the last frontiers in ecology. Indeed, predicting fine-scale species composition in natural systems is a complex challenge as multiple abiotic and biotic processes operate simultaneously to determine local species abundances. On the one hand, species intrinsic performance and their tolerance limits to different abiotic pressures modulate species abundances. On the other hand, there is growing recognition that species interactions play an equally important role in limiting or promoting such abundances within ecological communities. Here, we present a joint effort between ecologists and data scientists to use data-driven models to predict species abundances using reasonably easy to obtain data. We propose a sequential data-driven modeling approach that in a first step predicts the potential species abundances based on abiotic variables, and in a second step uses these predictions to model the realized abundances once accounting for species competition. Using a curated data set over five years we predict fine-scale species abundances in a highly diverse annual plant community. Our models show a remarkable spatial predictive accuracy using only easy-to-measure variables in the field, yet such predictive power is lost when temporal dynamics are taken into account. This result suggests that predicting future abundances requires longer time series analysis to capture enough variability. In addition, we show that these data-driven models can also suggest how to improve mechanistic models by adding missing variables that affect species performance such as particular soil conditions (e.g. carbonate availability in our case). Robust models for predicting fine-scale species composition informed by the mechanistic understanding of the underlying abiotic and biotic processes can be a pivotal tool for conservation, especially given the human-induced rapid environmental changes we are experiencing. This objective can be achieved by promoting the knowledge gained with classic modelling approaches in ecology and recently developed data-driven models.


Subject(s)
Biota/physiology , Machine Learning , Models, Biological , Algorithms , Computational Biology , Plants
16.
Nat Commun ; 12(1): 6192, 2021 10 26.
Article in English | MEDLINE | ID: mdl-34702825

ABSTRACT

The increase of species richness with area is a universal phenomenon on Earth. However, this observation contrasts with our poor understanding of how these species-area relationships (SARs) emerge from the collective effects of area, spatial heterogeneity, and local interactions. By combining a structuralist approach with five years of empirical observations in a highly-diverse Mediterranean grassland, we show that spatial heterogeneity plays a little role in the accumulation of species richness with area in our system. Instead, as we increase the sampled area more species combinations are realized, and they coexist mainly due to direct pairwise interactions rather than by changes in single-species dominance or by indirect interactions. We also identify a small set of transient species with small population sizes that are consistently found across spatial scales. These findings empirically support the importance of the architecture of species interactions together with stochastic events for driving coexistence- and species-area relationships.


Subject(s)
Ecosystem , Plants , Biodiversity , Grassland , Mediterranean Region , Models, Biological , Plants/classification , Population Dynamics , Stochastic Processes
17.
Ecology ; 102(12): e03526, 2021 12.
Article in English | MEDLINE | ID: mdl-34467526

ABSTRACT

Invasive species can reach high abundances and dominate native environments. One of the most impressive examples of ecological invasions is the spread of the African subspecies of the honey bee throughout the Americas, starting from its introduction in a single locality in Brazil. The invasive honey bee is expected to more negatively impact bee community abundance and diversity than native dominant species, but this has not been tested previously. We developed a comprehensive and systematic bee sampling scheme, using a protocol deploying 11,520 pan traps across regions and crops for three years in Brazil. We found that invasive honey bees are now the single most dominant bee species. Such dominance has not only negative consequences for abundance and species richness of native bees but also for overall bee abundance (i.e., strong "numerical" effects of honey bees). Contrary to expectations, honey bees did not have stronger negative impacts than other native bees achieving similar levels of dominance (i.e., lack of negative "identity" effects of honey bees). These effects were markedly consistent across crop species, seasons and years, and were independent from land-use effects. Dominance could be a proxy of bee community degradation and more generally of the severity of ecological invasions.


Subject(s)
Crops, Agricultural , Introduced Species , Animals , Bees , Brazil , Seasons
18.
Philos Trans R Soc Lond B Biol Sci ; 376(1834): 20200171, 2021 09 27.
Article in English | MEDLINE | ID: mdl-34365822

ABSTRACT

Ongoing environmental changes are affecting physical, chemical and biological soil components. Evidence of impacts of soil changes on pollinators' and seed dispersers' behaviour, fitness and density is scarce, but growing. Here, we reviewed information on such impacts and on a number of mechanisms that may explain its propagation, taking into account the full range of resources required by the large and diverse number of species of these two important functional groups. We show that while there is substantial evidence on the effects of soil nitrogen enrichment and changes in soil water content on the quality and quantity of floral and fruit resources, little is known on the effects of changes of other soil properties (e.g. soil pH, soil structure, other nutrients). Also, the few studies showing correlations between soil changes and pollinator and seed disperser foraging behaviour or fitness do not clearly identify the mechanisms that explain such correlation. Finally, most studies (including those with nitrogen and water) are local and limited to a small number of species, and it remains unclear how variable such effects are across time and geographical regions, and the strength of interactive effects between soil properties. Increasing research on this topic, taking into consideration how impacts propagate through species interaction networks, will provide essential information to predict impacts of ongoing environmental changes and help guide conservation plans that aim to minimize impacts on ecosystem functioning. This article is part of the theme issue 'The role of soils in delivering Nature's Contributions to People'.


Subject(s)
Pollination , Seed Dispersal , Soil/chemistry
19.
J Anim Ecol ; 90(11): 2536-2546, 2021 11.
Article in English | MEDLINE | ID: mdl-34143425

ABSTRACT

Solitary bees comprise around 90% of bee species, playing an essential role in both wild and crop plant pollination. Bee populations are jeopardized by different global change pressures such as climate change and landscape transformation. However, the interactive effects of global change components have been little explored, especially for solitary bees. We conducted a factorial experiment using artificial nest-traps to analyse the combined effect of climate warming and landscape transformation on Osmia bicornis reproduction and offspring body size. The number of bee cocoons increased with temperature and flower abundance in the landscape. However, the sex ratio was biased towards males with warming, especially at low flower abundances. Male body size increased with temperature. Conversely, female body sizes showed strong interactive responses, increasing in size with high flower abundance in the landscape, but only at low temperatures. The abortion rate of larvae and parasitization were not significantly affected by neither flower abundance nor temperature. Because the body size of females in O. bicornis is key for the next generation's progeny success, our results indicate that the simultaneous exposure to a shortage of floral resources and high temperatures may have adverse direct fitness effects.


Subject(s)
Pollination , Reproduction , Animals , Bees , Climate Change , Flowers , Larva
20.
R Soc Open Sci ; 8(5): 201940, 2021 May 19.
Article in English | MEDLINE | ID: mdl-34017597

ABSTRACT

When it comes to the brain, bigger is generally considered better in terms of cognitive performance. While this notion is supported by studies of birds and primates showing that larger brains improve learning capacity, similar evidence is surprisingly lacking for invertebrates. Although the brain of invertebrates is smaller and simpler than that of vertebrates, recent work in insects has revealed enormous variation in size across species. Here, we ask whether bee species that have larger brains also have higher learning abilities. We conducted an experiment in which field-collected individuals had to associate an unconditioned stimulus (sucrose) with a conditioned stimulus (coloured strip). We found that most species can learn to associate a colour with a reward, yet some do so better than others. These differences in learning were related to brain size: species with larger brains-both absolute and relative to body size-exhibited enhanced performance to learn the reward-colour association. Our finding highlights the functional significance of brain size in insects, filling a major gap in our understanding of brain evolution and opening new opportunities for future research.

SELECTION OF CITATIONS
SEARCH DETAIL
...