Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
Cell Rep ; 39(3): 110694, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35397208

ABSTRACT

Mutations in the spike protein generated a highly infectious and transmissible D614G variant, which is present in newly evolved fast-spreading variants. The D614G, Alpha, Beta, and Delta spike variants of SARS-CoV-2 appear to expedite membrane fusion process for entry, but the mechanism of spike-mediated fusion is unknown. Here, we reconstituted an in vitro pseudovirus-liposome fusion reaction and report that SARS-CoV-2 wild-type spike is a dynamic Ca2+ sensor, and D614G mutation enhances dynamic calcium sensitivity of spike protein for facilitating membrane fusion. This dynamic calcium sensitivity for fusion is found to be higher in Alpha and Beta variants and highest in Delta spike variant. We find that efficient fusion is dependent on Ca2+ concentration at low pH, and the fusion activity of spike dropped as the Ca2+ level rose beyond physiological levels. Thus, evolved spike variants may control the high fusion probability for entry by increasing Ca2+ sensing ability.


Subject(s)
COVID-19 , SARS-CoV-2 , Calcium , Humans , Membrane Fusion , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
2.
Sci Prog ; 104(1): 368504211004261, 2021.
Article in English | MEDLINE | ID: mdl-33787402

ABSTRACT

Recombinant baculoviruses (rBVs) have been extensively used to generate virus-like particles, and baculoviruses expressing antigenic proteins have become efficient tools for inducing protective immunity. However, current methods for generating baculoviruses are costly and inefficient. Thus, the development of a simple, rapid, and accurate method of baculovirus titration is critically important. We established a method of plaque assay using an immunostaining method by which plaques can be easily visualized in Sf9 cells under a light microscope. Sf9 cells were infected with recombinant baculoviruses expressing influenza hemagglutinin surface proteins from H1N1 (A/California/04/09) or rH5N1 (A/Vietnam/1203/04). The infected cells were incubated with anti-HA antibody and the plaques were visualized using the chromogen 3'3-diaminobenzidine (DAB). Plaques were observed from days 1 to 6 post-infection, and differences in Sf9 cell seeding densities resulted in variations in the final plaque quantification. Sf9 cells seeded at a concentration of 5.5 × 104 cells/well or 7.5 × 104 cells/well showed the higher plaque titers at days 3, 4, and 5 post-infection than those found at days 1, 2, and 6 post-infection. With 5.5 × 104 cells/well or 7.5 × 104 cells/well of cell concentrations, recombinant baculovirus for rBV-HA (H1N1) showed 6 × 107 pfu/ml of titer and rBVs for rBV-HA (rH5N1) showed 5.4 × 107 pfu/ml of titer. Three days of baculovirus incubation with a certain concentration of Sf9 cells seeded are required for a rapid, simple, and accurate plaque assay, which could significantly contribute to all baculovirus-related studies.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza, Human , Antibodies, Viral , Baculoviridae/genetics , Hemagglutinins , Humans
3.
Microb Pathog ; 149: 104495, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32910984

ABSTRACT

Avian influenza outbreaks have placed a tremendous economic burden on the poultry industry, necessitating the need for an effective vaccine. Although multiple vaccine candidates are available, its development is hindered by several drawbacks associated with the vaccine platforms and as such, more improvements to the vaccines are needed. Therefore, in this study, the vaccine efficacy in the murine models was assessed prior to evaluation in chickens. An oral recombinant baculovirus (rBV) vaccine expressing influenza hemagglutinin (HA) (A/H5N1) was generated and its efficacy was investigated against homologous avian influenza infection in mice. Our results confirmed that oral administration of rBVs enhanced the level of virus-specific antibodies in the sera following boost immunization. Upon challenge infection with a lethal dose of highly pathogenic avian influenza virus (HPAI, H5N1) virus, a marked increase in mucosal IgG and IgA were observed. Drastically increased antibody secretory cell responses from the bone marrow cells and splenocytes of vaccinated mice were observed, in addition to the strongly elicited germinal center responses in the lungs and the spleens. Vaccinated mice showed significantly reduced lung pro-inflammatory cytokine responses, lung viral loads, body weight loss, and mortality. Though mice were only partially protected upon challenge infection, these results highlight the potential of orally administered rBVs expressing the HA as a vaccine candidate for controlling avian influenza outbreaks.


Subject(s)
Influenza A Virus, H5N1 Subtype , Influenza Vaccines , Influenza in Birds , Orthomyxoviridae Infections , Animals , Antibodies, Viral , Baculoviridae/genetics , Chickens , Mice , Orthomyxoviridae Infections/prevention & control
4.
Parasite Immunol ; 42(11): e12781, 2020 11.
Article in English | MEDLINE | ID: mdl-32738150

ABSTRACT

AIMS: Merozoite surface protein 8 (MSP-8) of Plasmodium parasites plays an important role in erythrocyte invasion and is a potential malaria vaccine candidate. METHODS AND RESULTS: In this study, virus-like particles (VLPs) expressing MSP-8 of Plasmodium berghei on the surface of influenza virus matrix protein 1 (M1) core protein were generated for vaccine efficacy assessment. Mice were intramuscularly (IM) immunized with MSP-8 VLPs twice and challenge-infected with P. berghei. We found that VLP vaccination elicited higher levels of P. berghei-specific IgG antibody response in the sera, along with blood CD4+ and CD8+ T-cell response enhancement compared to the naïve control mice. CD4+ and CD8+ effector memory T-cell and memory B-cell responses in the spleen were found to be higher in VLP-immunized mice compared to control mice. VLP vaccination significantly reduced inflammatory cytokine (IFN-γ) response in the spleen and parasitemia levels in blood compared to naïve control mice. CONCLUSIONS: These results indicate that MSP-8 containing virus-like particles could be a vaccine candidate for blood-stage vaccine design.


Subject(s)
Antigens, Protozoan/immunology , Immunization , Malaria Vaccines/immunology , Malaria/parasitology , Plasmodium berghei/immunology , Protozoan Proteins/immunology , Animals , Antigens, Protozoan/genetics , Female , Mice , Mice, Inbred BALB C , Parasitemia , Plasmodium berghei/genetics , Plasmodium berghei/metabolism , Protozoan Proteins/genetics
5.
Vaccines (Basel) ; 8(3)2020 Jul 30.
Article in English | MEDLINE | ID: mdl-32751598

ABSTRACT

Merozoite surface protein 9 (MSP-9) from Plasmodium has shown promise as a vaccine candidate due to its location and possible role in erythrocyte invasion. In this study, we generated virus-like particles (VLPs) targeting P. berghei MSP-9, and investigated the protection against lethal doses of P. berghei in a mouse model. We found that VLP vaccination induced a P. berghei-specific IgG antibody response in the sera and CD4+ and CD8+ T cell populations in blood compared to a naïve control group. Upon challenge infection with P. berghei, vaccinated mice showed a significant increase in CD4+ and CD8+ effector memory T cell and memory B cell populations. Importantly, MSP-9 VLP immunization inhibited levels of the pro-inflammatory cytokines IFN-γ and IL-6 in the spleen and parasite replication in blood, resulting in significantly prolonged survival time. These results suggest that the MSP-9 VLP vaccine may constitute an effective malaria vaccine.

6.
PLoS One ; 15(5): e0233520, 2020.
Article in English | MEDLINE | ID: mdl-32459823

ABSTRACT

Although vaccine delivery through the oral route remains the most convenient and safest way for mass immunization purposes, this method is limited by the requirement for large antigen doses and low vaccine efficacy. In this study, we generated recombinant baculoviruses (rBVs) expressing influenza hemagglutinin (A/PR/8/34) and orally delivered a low dose of rBVs to evaluate its vaccine efficacy in mice. Intranasal rBV vaccination was included in the whole experiment for comparison. We found that oral vaccination elicited high levels of virus-specific IgG and IgA antibody responses in both serum and mucosal samples (lung, tracheal, intestinal, fecal and vaginal). Surprisingly, complete protection from the lethal influenza challenge was observed, as indicated by reductions in the virus titer, inflammatory cytokine production, body weight change, and enhanced survival. These results suggest that oral delivery of the influenza rBV vaccine induces mucosal and systemic immunity, which protect mice from the lethal influenza virus challenge. Oral delivery of baculovirus vaccines can be developed as an effective vaccination route.


Subject(s)
Baculoviridae , Hemagglutinin Glycoproteins, Influenza Virus , Influenza A Virus, H1N1 Subtype/immunology , Influenza Vaccines , Orthomyxoviridae Infections , Administration, Oral , Animals , Antibodies, Viral/immunology , Baculoviridae/genetics , Baculoviridae/immunology , Female , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Immunoglobulin A/immunology , Immunoglobulin G/immunology , Influenza A Virus, H1N1 Subtype/genetics , Influenza Vaccines/genetics , Influenza Vaccines/immunology , Influenza Vaccines/pharmacology , Mice , Mice, Inbred BALB C , Orthomyxoviridae Infections/genetics , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/prevention & control , Sf9 Cells , Spodoptera
7.
Expert Rev Vaccines ; 19(1): 11-24, 2020 01.
Article in English | MEDLINE | ID: mdl-31903811

ABSTRACT

Introduction: Influenza virus, human respiratory syncytial virus (RSV), and human metapneumovirus (HMPV) are important human respiratory pathogens. Recombinant virus-like particle (VLP) vaccines are suggested to be potential promising platforms to protect against these respiratory viruses. This review updates important progress in the development of VLP vaccines against respiratory viruses.Areas Covered: This review summarizes progress in developing VLP and nanoparticle-based vaccines against influenza virus, RSV, and HMPV. The PubMed was mainly used to search for important research articles published since 2010 although earlier key articles were also referenced. The research area covered includes VLP and nanoparticle platform vaccines against seasonal, pandemic, and avian influenza viruses as well as RSV and HMPV respiratory viruses. The production methods, immunogenic properties, and vaccine efficacy of respiratory VLP vaccines in preclinical animal models and clinical studies were reviewed in this article.Expert opinion: Previous and current preclinical and clinical studies suggest that recombinant VLP and nanoparticle vaccines are expected to be developed as promising alternative platforms against respiratory viruses in future. Therefore, continued research efforts are warranted.


Subject(s)
Vaccines, Virus-Like Particle/administration & dosage , Viral Vaccines/administration & dosage , Animals , Humans , Influenza Vaccines/administration & dosage , Influenza Vaccines/immunology , Influenza, Human/immunology , Influenza, Human/prevention & control , Nanoparticles , Paramyxoviridae Infections/immunology , Paramyxoviridae Infections/prevention & control , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus Vaccines/administration & dosage , Respiratory Syncytial Virus Vaccines/immunology , Vaccines, Virus-Like Particle/immunology
8.
FEMS Microbiol Ecol ; 95(11)2019 11 01.
Article in English | MEDLINE | ID: mdl-31609448

ABSTRACT

Bradyrhizobium is a biologically important bacterial genus. Different Bradyrhizobium strains exhibit distinct niche selection like free living, root nodular and stem nodular. The present in-silico study was undertaken to identify the role of bacterial secretome in the phylogenetic niche conservation (PNC) of Bradyrhizobium sp. Analysis was carried out with the publicly available 19 complete genome assembly and annotation reports. A protocol was developed to screen the secretome related genes using three different database, viz. genome, proteome and gene ortholog. This resulted into 139 orthologs that include type secretion systems (T1SS-T6SS) along with flagella (Flg), type IV pili (T4P) and tight adherence (Tad) systems. Multivariate analysis using bacterial secretome was undertaken to find out the role of these secretion systems in PNC. In free living strains, T3SS, T4SS and T6SS were completely absent. Whereas, in the stem nodulating strains, T3SS and T6SS were absent, but T4SS was found to be present. On the other hand, the T3SS was found to be present only in the root-nodulating strains. The present investigation clearly demonstrated a pattern of PNC based on the distribution of secretion system components. To the best of our knowledge, this is the first report on PNC of Bradyrhizobium using the multivariate analysis of secretome.


Subject(s)
Bacterial Secretion Systems/physiology , Bradyrhizobium/metabolism , Bradyrhizobium/classification , Bradyrhizobium/genetics , DNA, Bacterial , Phylogeny , Root Nodules, Plant/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL